ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbelx Unicode version

Theorem sbelx 2025
Description: Elimination of substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbelx  |-  ( ph  <->  E. x ( x  =  y  /\  [ x  /  y ] ph ) )
Distinct variable groups:    x, y    ph, x
Allowed substitution hint:    ph( y)

Proof of Theorem sbelx
StepHypRef Expression
1 ax-17 1549 . 2  |-  ( ph  ->  A. x ph )
21sb5rf 1875 1  |-  ( ph  <->  E. x ( x  =  y  /\  [ x  /  y ] ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1515   [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-sb 1786
This theorem is referenced by:  sbel2x  2026
  Copyright terms: Public domain W3C validator