ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb5rf Unicode version

Theorem sb5rf 1840
Description: Reversed substitution. (Contributed by NM, 3-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
sb5rf.1  |-  ( ph  ->  A. y ph )
Assertion
Ref Expression
sb5rf  |-  ( ph  <->  E. y ( y  =  x  /\  [ y  /  x ] ph ) )

Proof of Theorem sb5rf
StepHypRef Expression
1 sb5rf.1 . . . 4  |-  ( ph  ->  A. y ph )
21sbid2h 1837 . . 3  |-  ( [ x  /  y ] [ y  /  x ] ph  <->  ph )
3 sb1 1754 . . 3  |-  ( [ x  /  y ] [ y  /  x ] ph  ->  E. y
( y  =  x  /\  [ y  /  x ] ph ) )
42, 3sylbir 134 . 2  |-  ( ph  ->  E. y ( y  =  x  /\  [
y  /  x ] ph ) )
5 stdpc7 1758 . . . 4  |-  ( y  =  x  ->  ( [ y  /  x ] ph  ->  ph ) )
65imp 123 . . 3  |-  ( ( y  =  x  /\  [ y  /  x ] ph )  ->  ph )
71, 6exlimih 1581 . 2  |-  ( E. y ( y  =  x  /\  [ y  /  x ] ph )  ->  ph )
84, 7impbii 125 1  |-  ( ph  <->  E. y ( y  =  x  /\  [ y  /  x ] ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341   E.wex 1480   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by:  2sb5rf  1977  sbelx  1985
  Copyright terms: Public domain W3C validator