ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb5rf Unicode version

Theorem sb5rf 1866
Description: Reversed substitution. (Contributed by NM, 3-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
sb5rf.1  |-  ( ph  ->  A. y ph )
Assertion
Ref Expression
sb5rf  |-  ( ph  <->  E. y ( y  =  x  /\  [ y  /  x ] ph ) )

Proof of Theorem sb5rf
StepHypRef Expression
1 sb5rf.1 . . . 4  |-  ( ph  ->  A. y ph )
21sbid2h 1863 . . 3  |-  ( [ x  /  y ] [ y  /  x ] ph  <->  ph )
3 sb1 1780 . . 3  |-  ( [ x  /  y ] [ y  /  x ] ph  ->  E. y
( y  =  x  /\  [ y  /  x ] ph ) )
42, 3sylbir 135 . 2  |-  ( ph  ->  E. y ( y  =  x  /\  [
y  /  x ] ph ) )
5 stdpc7 1784 . . . 4  |-  ( y  =  x  ->  ( [ y  /  x ] ph  ->  ph ) )
65imp 124 . . 3  |-  ( ( y  =  x  /\  [ y  /  x ] ph )  ->  ph )
71, 6exlimih 1607 . 2  |-  ( E. y ( y  =  x  /\  [ y  /  x ] ph )  ->  ph )
84, 7impbii 126 1  |-  ( ph  <->  E. y ( y  =  x  /\  [ y  /  x ] ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362   E.wex 1506   [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-sb 1777
This theorem is referenced by:  2sb5rf  2008  sbelx  2016
  Copyright terms: Public domain W3C validator