Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbelx | GIF version |
Description: Elimination of substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbelx | ⊢ (𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1520 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | sb5rf 1846 | 1 ⊢ (𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1486 [wsb 1756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1441 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-11 1500 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 |
This theorem depends on definitions: df-bi 116 df-sb 1757 |
This theorem is referenced by: sbel2x 1992 |
Copyright terms: Public domain | W3C validator |