Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbid2v | Unicode version |
Description: An identity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbid2v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1506 | . 2 | |
2 | 1 | sbid2h 1829 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wsb 1742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 df-sb 1743 |
This theorem is referenced by: bdph 13467 |
Copyright terms: Public domain | W3C validator |