ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgscllem Unicode version

Theorem lgscllem 13979
Description: The Legendre symbol is an element of  Z. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
lgsfcl2.z  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
Assertion
Ref Expression
lgscllem  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  Z
)
Distinct variable groups:    A, n, x   
x, F    n, N, x    n, Z
Allowed substitution hints:    F( n)    Z( x)

Proof of Theorem lgscllem
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsval.1 . . 3  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
21lgsval 13976 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  =  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) ) ) )
3 lgsfcl2.z . . . . . . . 8  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
43lgslem2 13973 . . . . . . 7  |-  ( -u
1  e.  Z  /\  0  e.  Z  /\  1  e.  Z )
54simp3i 1008 . . . . . 6  |-  1  e.  Z
65a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  1  e.  Z )
74simp2i 1007 . . . . . 6  |-  0  e.  Z
87a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  Z )
9 zsqcl 10560 . . . . . 6  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
10 1zzd 9253 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  1  e.  ZZ )
11 zdceq 9301 . . . . . 6  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
129, 10, 11syl2an2r 595 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
136, 8, 12ifcldcd 3567 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  if ( ( A ^ 2 )  =  1 ,  1 ,  0 )  e.  Z
)
1413adantr 276 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  if (
( A ^ 2 )  =  1 ,  1 ,  0 )  e.  Z )
154simp1i 1006 . . . . . 6  |-  -u 1  e.  Z
1615a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> 
-u 1  e.  Z
)
17 simpr 110 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
18 0zd 9238 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  ZZ )
19 zdclt 9303 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  <  0 )
2017, 18, 19syl2anc 411 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  <  0 )
21 zdclt 9303 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  <  0 )
2218, 21syldan 282 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  A  <  0 )
23 dcan2 934 . . . . . 6  |-  (DECID  N  <  0  ->  (DECID  A  <  0  -> DECID 
( N  <  0  /\  A  <  0
) ) )
2420, 22, 23sylc 62 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( N  <  0  /\  A  <  0 ) )
2516, 6, 24ifcldcd 3567 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  Z )
26 nnuz 9536 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
27 1zzd 9253 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  1  e.  ZZ )
28 df-ne 2346 . . . . . . . 8  |-  ( N  =/=  0  <->  -.  N  =  0 )
291, 3lgsfcl2 13978 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> Z )
30293expa 1203 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  F : NN
--> Z )
3128, 30sylan2br 288 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  F : NN --> Z )
3231ffvelcdmda 5643 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  y  e.  NN )  ->  ( F `  y )  e.  Z
)
333lgslem3 13974 . . . . . . 7  |-  ( ( y  e.  Z  /\  z  e.  Z )  ->  ( y  x.  z
)  e.  Z )
3433adantl 277 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  ( y  e.  Z  /\  z  e.  Z ) )  -> 
( y  x.  z
)  e.  Z )
3526, 27, 32, 34seqf 10431 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  seq 1 (  x.  ,  F ) : NN --> Z )
36 simplr 528 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  N  e.  ZZ )
37 simpr 110 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  -.  N  =  0 )
3837neqned 2352 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  N  =/=  0 )
39 nnabscl 11077 . . . . . 6  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
4036, 38, 39syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  ( abs `  N )  e.  NN )
4135, 40ffvelcdmd 5644 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) )  e.  Z )
423lgslem3 13974 . . . 4  |-  ( ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  Z  /\  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) )  e.  Z )  -> 
( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) )  e.  Z )
4325, 41, 42syl2an2r 595 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  F
) `  ( abs `  N ) ) )  e.  Z )
44 zdceq 9301 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
4517, 18, 44syl2anc 411 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  =  0 )
4614, 43, 45ifcldadc 3561 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `
 ( abs `  N
) ) ) )  e.  Z )
472, 46eqeltrd 2252 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  Z
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 834    = wceq 1353    e. wcel 2146    =/= wne 2345   {crab 2457   ifcif 3532   {cpr 3590   class class class wbr 3998    |-> cmpt 4059   -->wf 5204   ` cfv 5208  (class class class)co 5865   0cc0 7786   1c1 7787    + caddc 7789    x. cmul 7791    < clt 7966    <_ cle 7967    - cmin 8102   -ucneg 8103    / cdiv 8602   NNcn 8892   2c2 8943   7c7 8948   8c8 8949   ZZcz 9226    mod cmo 10292    seqcseq 10415   ^cexp 10489   abscabs 10974    || cdvds 11762   Primecprime 12074    pCnt cpc 12251    /Lclgs 13969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-frec 6382  df-1o 6407  df-2o 6408  df-oadd 6411  df-er 6525  df-en 6731  df-dom 6732  df-fin 6733  df-sup 6973  df-inf 6974  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-3 8952  df-4 8953  df-5 8954  df-6 8955  df-7 8956  df-8 8957  df-n0 9150  df-z 9227  df-uz 9502  df-q 9593  df-rp 9625  df-fz 9980  df-fzo 10113  df-fl 10240  df-mod 10293  df-seqfrec 10416  df-exp 10490  df-ihash 10724  df-cj 10819  df-re 10820  df-im 10821  df-rsqrt 10975  df-abs 10976  df-clim 11255  df-proddc 11527  df-dvds 11763  df-gcd 11911  df-prm 12075  df-phi 12178  df-pc 12252  df-lgs 13970
This theorem is referenced by:  lgscl2  13984
  Copyright terms: Public domain W3C validator