ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgscllem Unicode version

Theorem lgscllem 15164
Description: The Legendre symbol is an element of  Z. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
lgsfcl2.z  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
Assertion
Ref Expression
lgscllem  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  Z
)
Distinct variable groups:    A, n, x   
x, F    n, N, x    n, Z
Allowed substitution hints:    F( n)    Z( x)

Proof of Theorem lgscllem
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsval.1 . . 3  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
21lgsval 15161 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  =  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) ) ) )
3 lgsfcl2.z . . . . . . . 8  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
43lgslem2 15158 . . . . . . 7  |-  ( -u
1  e.  Z  /\  0  e.  Z  /\  1  e.  Z )
54simp3i 1010 . . . . . 6  |-  1  e.  Z
65a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  1  e.  Z )
74simp2i 1009 . . . . . 6  |-  0  e.  Z
87a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  Z )
9 zsqcl 10684 . . . . . 6  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
10 1zzd 9347 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  1  e.  ZZ )
11 zdceq 9395 . . . . . 6  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
129, 10, 11syl2an2r 595 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
136, 8, 12ifcldcd 3594 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  if ( ( A ^ 2 )  =  1 ,  1 ,  0 )  e.  Z
)
1413adantr 276 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  if (
( A ^ 2 )  =  1 ,  1 ,  0 )  e.  Z )
154simp1i 1008 . . . . . 6  |-  -u 1  e.  Z
1615a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> 
-u 1  e.  Z
)
17 simpr 110 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
18 0zd 9332 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  ZZ )
19 zdclt 9397 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  <  0 )
2017, 18, 19syl2anc 411 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  <  0 )
21 zdclt 9397 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  <  0 )
2218, 21syldan 282 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  A  <  0 )
23 dcan2 936 . . . . . 6  |-  (DECID  N  <  0  ->  (DECID  A  <  0  -> DECID 
( N  <  0  /\  A  <  0
) ) )
2420, 22, 23sylc 62 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( N  <  0  /\  A  <  0 ) )
2516, 6, 24ifcldcd 3594 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  Z )
26 nnuz 9631 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
27 1zzd 9347 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  1  e.  ZZ )
28 df-ne 2365 . . . . . . . 8  |-  ( N  =/=  0  <->  -.  N  =  0 )
291, 3lgsfcl2 15163 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> Z )
30293expa 1205 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  F : NN
--> Z )
3128, 30sylan2br 288 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  F : NN --> Z )
3231ffvelcdmda 5694 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  y  e.  NN )  ->  ( F `  y )  e.  Z
)
333lgslem3 15159 . . . . . . 7  |-  ( ( y  e.  Z  /\  z  e.  Z )  ->  ( y  x.  z
)  e.  Z )
3433adantl 277 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  ( y  e.  Z  /\  z  e.  Z ) )  -> 
( y  x.  z
)  e.  Z )
3526, 27, 32, 34seqf 10538 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  seq 1 (  x.  ,  F ) : NN --> Z )
36 simplr 528 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  N  e.  ZZ )
37 simpr 110 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  -.  N  =  0 )
3837neqned 2371 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  N  =/=  0 )
39 nnabscl 11247 . . . . . 6  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
4036, 38, 39syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  ( abs `  N )  e.  NN )
4135, 40ffvelcdmd 5695 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) )  e.  Z )
423lgslem3 15159 . . . 4  |-  ( ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  Z  /\  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) )  e.  Z )  -> 
( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) )  e.  Z )
4325, 41, 42syl2an2r 595 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  F
) `  ( abs `  N ) ) )  e.  Z )
44 zdceq 9395 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
4517, 18, 44syl2anc 411 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  =  0 )
4614, 43, 45ifcldadc 3587 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `
 ( abs `  N
) ) ) )  e.  Z )
472, 46eqeltrd 2270 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  Z
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364   {crab 2476   ifcif 3558   {cpr 3620   class class class wbr 4030    |-> cmpt 4091   -->wf 5251   ` cfv 5255  (class class class)co 5919   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    < clt 8056    <_ cle 8057    - cmin 8192   -ucneg 8193    / cdiv 8693   NNcn 8984   2c2 9035   7c7 9040   8c8 9041   ZZcz 9320    mod cmo 10396    seqcseq 10521   ^cexp 10612   abscabs 11144    || cdvds 11933   Primecprime 12248    pCnt cpc 12425    /Lclgs 15154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-2o 6472  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-proddc 11697  df-dvds 11934  df-gcd 12083  df-prm 12249  df-phi 12352  df-pc 12426  df-lgs 15155
This theorem is referenced by:  lgscl2  15169
  Copyright terms: Public domain W3C validator