ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgscllem Unicode version

Theorem lgscllem 13702
Description: The Legendre symbol is an element of  Z. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
lgsfcl2.z  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
Assertion
Ref Expression
lgscllem  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  Z
)
Distinct variable groups:    A, n, x   
x, F    n, N, x    n, Z
Allowed substitution hints:    F( n)    Z( x)

Proof of Theorem lgscllem
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsval.1 . . 3  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
21lgsval 13699 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  =  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) ) ) )
3 lgsfcl2.z . . . . . . . 8  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
43lgslem2 13696 . . . . . . 7  |-  ( -u
1  e.  Z  /\  0  e.  Z  /\  1  e.  Z )
54simp3i 1003 . . . . . 6  |-  1  e.  Z
65a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  1  e.  Z )
74simp2i 1002 . . . . . 6  |-  0  e.  Z
87a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  Z )
9 zsqcl 10546 . . . . . 6  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
10 1zzd 9239 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  1  e.  ZZ )
11 zdceq 9287 . . . . . 6  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
129, 10, 11syl2an2r 590 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
136, 8, 12ifcldcd 3561 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  if ( ( A ^ 2 )  =  1 ,  1 ,  0 )  e.  Z
)
1413adantr 274 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  if (
( A ^ 2 )  =  1 ,  1 ,  0 )  e.  Z )
154simp1i 1001 . . . . . 6  |-  -u 1  e.  Z
1615a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> 
-u 1  e.  Z
)
17 simpr 109 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
18 0zd 9224 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  ZZ )
19 zdclt 9289 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  <  0 )
2017, 18, 19syl2anc 409 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  <  0 )
21 zdclt 9289 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  <  0 )
2218, 21syldan 280 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  A  <  0 )
23 dcan2 929 . . . . . 6  |-  (DECID  N  <  0  ->  (DECID  A  <  0  -> DECID 
( N  <  0  /\  A  <  0
) ) )
2420, 22, 23sylc 62 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( N  <  0  /\  A  <  0 ) )
2516, 6, 24ifcldcd 3561 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  Z )
26 nnuz 9522 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
27 1zzd 9239 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  1  e.  ZZ )
28 df-ne 2341 . . . . . . . 8  |-  ( N  =/=  0  <->  -.  N  =  0 )
291, 3lgsfcl2 13701 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> Z )
30293expa 1198 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  F : NN
--> Z )
3128, 30sylan2br 286 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  F : NN --> Z )
3231ffvelrnda 5631 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  y  e.  NN )  ->  ( F `  y )  e.  Z
)
333lgslem3 13697 . . . . . . 7  |-  ( ( y  e.  Z  /\  z  e.  Z )  ->  ( y  x.  z
)  e.  Z )
3433adantl 275 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  ( y  e.  Z  /\  z  e.  Z ) )  -> 
( y  x.  z
)  e.  Z )
3526, 27, 32, 34seqf 10417 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  seq 1 (  x.  ,  F ) : NN --> Z )
36 simplr 525 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  N  e.  ZZ )
37 simpr 109 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  -.  N  =  0 )
3837neqned 2347 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  N  =/=  0 )
39 nnabscl 11064 . . . . . 6  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
4036, 38, 39syl2anc 409 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  ( abs `  N )  e.  NN )
4135, 40ffvelrnd 5632 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) )  e.  Z )
423lgslem3 13697 . . . 4  |-  ( ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  Z  /\  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) )  e.  Z )  -> 
( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) )  e.  Z )
4325, 41, 42syl2an2r 590 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  F
) `  ( abs `  N ) ) )  e.  Z )
44 zdceq 9287 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
4517, 18, 44syl2anc 409 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  =  0 )
4614, 43, 45ifcldadc 3555 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `
 ( abs `  N
) ) ) )  e.  Z )
472, 46eqeltrd 2247 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  Z
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103  DECID wdc 829    = wceq 1348    e. wcel 2141    =/= wne 2340   {crab 2452   ifcif 3526   {cpr 3584   class class class wbr 3989    |-> cmpt 4050   -->wf 5194   ` cfv 5198  (class class class)co 5853   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    <_ cle 7955    - cmin 8090   -ucneg 8091    / cdiv 8589   NNcn 8878   2c2 8929   7c7 8934   8c8 8935   ZZcz 9212    mod cmo 10278    seqcseq 10401   ^cexp 10475   abscabs 10961    || cdvds 11749   Primecprime 12061    pCnt cpc 12238    /Lclgs 13692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-2o 6396  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514  df-dvds 11750  df-gcd 11898  df-prm 12062  df-phi 12165  df-pc 12239  df-lgs 13693
This theorem is referenced by:  lgscl2  13707
  Copyright terms: Public domain W3C validator