ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgscllem Unicode version

Theorem lgscllem 15248
Description: The Legendre symbol is an element of  Z. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
lgsfcl2.z  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
Assertion
Ref Expression
lgscllem  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  Z
)
Distinct variable groups:    A, n, x   
x, F    n, N, x    n, Z
Allowed substitution hints:    F( n)    Z( x)

Proof of Theorem lgscllem
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsval.1 . . 3  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
21lgsval 15245 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  =  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) ) ) )
3 lgsfcl2.z . . . . . . . 8  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
43lgslem2 15242 . . . . . . 7  |-  ( -u
1  e.  Z  /\  0  e.  Z  /\  1  e.  Z )
54simp3i 1010 . . . . . 6  |-  1  e.  Z
65a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  1  e.  Z )
74simp2i 1009 . . . . . 6  |-  0  e.  Z
87a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  Z )
9 zsqcl 10702 . . . . . 6  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
10 1zzd 9353 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  1  e.  ZZ )
11 zdceq 9401 . . . . . 6  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
129, 10, 11syl2an2r 595 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
136, 8, 12ifcldcd 3597 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  if ( ( A ^ 2 )  =  1 ,  1 ,  0 )  e.  Z
)
1413adantr 276 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  if (
( A ^ 2 )  =  1 ,  1 ,  0 )  e.  Z )
154simp1i 1008 . . . . . 6  |-  -u 1  e.  Z
1615a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> 
-u 1  e.  Z
)
17 simpr 110 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
18 0zd 9338 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  ZZ )
19 zdclt 9403 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  <  0 )
2017, 18, 19syl2anc 411 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  <  0 )
21 zdclt 9403 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  <  0 )
2218, 21syldan 282 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  A  <  0 )
23 dcan2 936 . . . . . 6  |-  (DECID  N  <  0  ->  (DECID  A  <  0  -> DECID 
( N  <  0  /\  A  <  0
) ) )
2420, 22, 23sylc 62 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( N  <  0  /\  A  <  0 ) )
2516, 6, 24ifcldcd 3597 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  Z )
26 nnuz 9637 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
27 1zzd 9353 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  1  e.  ZZ )
28 df-ne 2368 . . . . . . . 8  |-  ( N  =/=  0  <->  -.  N  =  0 )
291, 3lgsfcl2 15247 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> Z )
30293expa 1205 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  F : NN
--> Z )
3128, 30sylan2br 288 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  F : NN --> Z )
3231ffvelcdmda 5697 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  y  e.  NN )  ->  ( F `  y )  e.  Z
)
333lgslem3 15243 . . . . . . 7  |-  ( ( y  e.  Z  /\  z  e.  Z )  ->  ( y  x.  z
)  e.  Z )
3433adantl 277 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  ( y  e.  Z  /\  z  e.  Z ) )  -> 
( y  x.  z
)  e.  Z )
3526, 27, 32, 34seqf 10556 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  seq 1 (  x.  ,  F ) : NN --> Z )
36 simplr 528 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  N  e.  ZZ )
37 simpr 110 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  -.  N  =  0 )
3837neqned 2374 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  N  =/=  0 )
39 nnabscl 11265 . . . . . 6  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
4036, 38, 39syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  ( abs `  N )  e.  NN )
4135, 40ffvelcdmd 5698 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) )  e.  Z )
423lgslem3 15243 . . . 4  |-  ( ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  Z  /\  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) )  e.  Z )  -> 
( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) )  e.  Z )
4325, 41, 42syl2an2r 595 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  F
) `  ( abs `  N ) ) )  e.  Z )
44 zdceq 9401 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
4517, 18, 44syl2anc 411 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  =  0 )
4614, 43, 45ifcldadc 3590 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `
 ( abs `  N
) ) ) )  e.  Z )
472, 46eqeltrd 2273 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  Z
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2167    =/= wne 2367   {crab 2479   ifcif 3561   {cpr 3623   class class class wbr 4033    |-> cmpt 4094   -->wf 5254   ` cfv 5258  (class class class)co 5922   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197   -ucneg 8198    / cdiv 8699   NNcn 8990   2c2 9041   7c7 9046   8c8 9047   ZZcz 9326    mod cmo 10414    seqcseq 10539   ^cexp 10630   abscabs 11162    || cdvds 11952   Primecprime 12275    pCnt cpc 12453    /Lclgs 15238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716  df-dvds 11953  df-gcd 12121  df-prm 12276  df-phi 12379  df-pc 12454  df-lgs 15239
This theorem is referenced by:  lgscl2  15253
  Copyright terms: Public domain W3C validator