ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgslem4 Unicode version

Theorem lgslem4 15480
Description: Lemma for lgsfcl2 15483. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 19-Mar-2022.)
Hypothesis
Ref Expression
lgslem2.z  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
Assertion
Ref Expression
lgslem4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  e.  Z )
Distinct variable group:    x, A
Allowed substitution hints:    P( x)    Z( x)

Proof of Theorem lgslem4
StepHypRef Expression
1 eldifi 3295 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
21adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  Prime )
3 simpl 109 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  A  e.  ZZ )
4 oddprm 12582 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
54adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( P  -  1 )  /  2 )  e.  NN )
6 prmdvdsexp 12470 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( ( P  -  1 )  /  2 )  e.  NN )  ->  ( P  ||  ( A ^
( ( P  - 
1 )  /  2
) )  <->  P  ||  A
) )
72, 3, 5, 6syl3anc 1250 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( P  ||  ( A ^ (
( P  -  1 )  /  2 ) )  <->  P  ||  A ) )
87biimpar 297 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  ||  ( A ^ (
( P  -  1 )  /  2 ) ) )
9 prmgt1 12454 . . . . . . 7  |-  ( P  e.  Prime  ->  1  < 
P )
101, 9syl 14 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
1  <  P )
1110ad2antlr 489 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  1  <  P )
12 p1modz1 12105 . . . . 5  |-  ( ( P  ||  ( A ^ ( ( P  -  1 )  / 
2 ) )  /\  1  <  P )  -> 
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  1 )
138, 11, 12syl2anc 411 . . . 4  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  1 )
1413oveq1d 5959 . . 3  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( 1  -  1 ) )
15 1m1e0 9105 . . . 4  |-  ( 1  -  1 )  =  0
16 lgslem2.z . . . . . 6  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
1716lgslem2 15478 . . . . 5  |-  ( -u
1  e.  Z  /\  0  e.  Z  /\  1  e.  Z )
1817simp2i 1010 . . . 4  |-  0  e.  Z
1915, 18eqeltri 2278 . . 3  |-  ( 1  -  1 )  e.  Z
2014, 19eqeltrdi 2296 . 2  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
21 lgslem1 15477 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 } )
22 elpri 3656 . . . 4  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 }  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  0  \/  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  2 ) )
23 oveq1 5951 . . . . . 6  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  0  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( 0  -  1 ) )
24 df-neg 8246 . . . . . . 7  |-  -u 1  =  ( 0  -  1 )
2517simp1i 1009 . . . . . . 7  |-  -u 1  e.  Z
2624, 25eqeltrri 2279 . . . . . 6  |-  ( 0  -  1 )  e.  Z
2723, 26eqeltrdi 2296 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  0  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
28 oveq1 5951 . . . . . 6  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  2  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( 2  -  1 ) )
29 2m1e1 9154 . . . . . . 7  |-  ( 2  -  1 )  =  1
3017simp3i 1011 . . . . . . 7  |-  1  e.  Z
3129, 30eqeltri 2278 . . . . . 6  |-  ( 2  -  1 )  e.  Z
3228, 31eqeltrdi 2296 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  2  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
3327, 32jaoi 718 . . . 4  |-  ( ( ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  0  \/  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  2 )  ->  ( ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  - 
1 )  e.  Z
)
3421, 22, 333syl 17 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
35343expa 1206 . 2  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
36 prmnn 12432 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
371, 36syl 14 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  NN )
3837adantl 277 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  NN )
39 dvdsdc 12109 . . . 4  |-  ( ( P  e.  NN  /\  A  e.  ZZ )  -> DECID  P 
||  A )
4038, 3, 39syl2anc 411 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  -> DECID  P  ||  A )
41 exmiddc 838 . . 3  |-  (DECID  P  ||  A  ->  ( P  ||  A  \/  -.  P  ||  A ) )
4240, 41syl 14 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( P  ||  A  \/  -.  P  ||  A ) )
4320, 35, 42mpjaodan 800 1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  e.  Z )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2176   {crab 2488    \ cdif 3163   {csn 3633   {cpr 3634   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   0cc0 7925   1c1 7926    + caddc 7928    < clt 8107    <_ cle 8108    - cmin 8243   -ucneg 8244    / cdiv 8745   NNcn 9036   2c2 9087   ZZcz 9372    mod cmo 10467   ^cexp 10683   abscabs 11308    || cdvds 12098   Primecprime 12429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-2o 6503  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-sup 7086  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-proddc 11862  df-dvds 12099  df-gcd 12275  df-prm 12430  df-phi 12533
This theorem is referenced by:  lgsfcl2  15483
  Copyright terms: Public domain W3C validator