ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgslem4 Unicode version

Theorem lgslem4 13975
Description: Lemma for lgsfcl2 13978. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 19-Mar-2022.)
Hypothesis
Ref Expression
lgslem2.z  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
Assertion
Ref Expression
lgslem4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  e.  Z )
Distinct variable group:    x, A
Allowed substitution hints:    P( x)    Z( x)

Proof of Theorem lgslem4
StepHypRef Expression
1 eldifi 3255 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
21adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  Prime )
3 simpl 109 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  A  e.  ZZ )
4 oddprm 12226 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
54adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( P  -  1 )  /  2 )  e.  NN )
6 prmdvdsexp 12115 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( ( P  -  1 )  /  2 )  e.  NN )  ->  ( P  ||  ( A ^
( ( P  - 
1 )  /  2
) )  <->  P  ||  A
) )
72, 3, 5, 6syl3anc 1238 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( P  ||  ( A ^ (
( P  -  1 )  /  2 ) )  <->  P  ||  A ) )
87biimpar 297 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  ||  ( A ^ (
( P  -  1 )  /  2 ) ) )
9 prmgt1 12099 . . . . . . 7  |-  ( P  e.  Prime  ->  1  < 
P )
101, 9syl 14 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
1  <  P )
1110ad2antlr 489 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  1  <  P )
12 p1modz1 11769 . . . . 5  |-  ( ( P  ||  ( A ^ ( ( P  -  1 )  / 
2 ) )  /\  1  <  P )  -> 
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  1 )
138, 11, 12syl2anc 411 . . . 4  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  1 )
1413oveq1d 5880 . . 3  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( 1  -  1 ) )
15 1m1e0 8961 . . . 4  |-  ( 1  -  1 )  =  0
16 lgslem2.z . . . . . 6  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
1716lgslem2 13973 . . . . 5  |-  ( -u
1  e.  Z  /\  0  e.  Z  /\  1  e.  Z )
1817simp2i 1007 . . . 4  |-  0  e.  Z
1915, 18eqeltri 2248 . . 3  |-  ( 1  -  1 )  e.  Z
2014, 19eqeltrdi 2266 . 2  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
21 lgslem1 13972 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 } )
22 elpri 3612 . . . 4  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 }  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  0  \/  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  2 ) )
23 oveq1 5872 . . . . . 6  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  0  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( 0  -  1 ) )
24 df-neg 8105 . . . . . . 7  |-  -u 1  =  ( 0  -  1 )
2517simp1i 1006 . . . . . . 7  |-  -u 1  e.  Z
2624, 25eqeltrri 2249 . . . . . 6  |-  ( 0  -  1 )  e.  Z
2723, 26eqeltrdi 2266 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  0  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
28 oveq1 5872 . . . . . 6  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  2  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( 2  -  1 ) )
29 2m1e1 9010 . . . . . . 7  |-  ( 2  -  1 )  =  1
3017simp3i 1008 . . . . . . 7  |-  1  e.  Z
3129, 30eqeltri 2248 . . . . . 6  |-  ( 2  -  1 )  e.  Z
3228, 31eqeltrdi 2266 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  2  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
3327, 32jaoi 716 . . . 4  |-  ( ( ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  0  \/  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  2 )  ->  ( ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  - 
1 )  e.  Z
)
3421, 22, 333syl 17 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
35343expa 1203 . 2  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
36 prmnn 12077 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
371, 36syl 14 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  NN )
3837adantl 277 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  NN )
39 dvdsdc 11773 . . . 4  |-  ( ( P  e.  NN  /\  A  e.  ZZ )  -> DECID  P 
||  A )
4038, 3, 39syl2anc 411 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  -> DECID  P  ||  A )
41 exmiddc 836 . . 3  |-  (DECID  P  ||  A  ->  ( P  ||  A  \/  -.  P  ||  A ) )
4240, 41syl 14 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( P  ||  A  \/  -.  P  ||  A ) )
4320, 35, 42mpjaodan 798 1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  e.  Z )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2146   {crab 2457    \ cdif 3124   {csn 3589   {cpr 3590   class class class wbr 3998   ` cfv 5208  (class class class)co 5865   0cc0 7786   1c1 7787    + caddc 7789    < clt 7966    <_ cle 7967    - cmin 8102   -ucneg 8103    / cdiv 8602   NNcn 8892   2c2 8943   ZZcz 9226    mod cmo 10292   ^cexp 10489   abscabs 10974    || cdvds 11762   Primecprime 12074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-frec 6382  df-1o 6407  df-2o 6408  df-oadd 6411  df-er 6525  df-en 6731  df-dom 6732  df-fin 6733  df-sup 6973  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-3 8952  df-4 8953  df-n0 9150  df-z 9227  df-uz 9502  df-q 9593  df-rp 9625  df-fz 9980  df-fzo 10113  df-fl 10240  df-mod 10293  df-seqfrec 10416  df-exp 10490  df-ihash 10724  df-cj 10819  df-re 10820  df-im 10821  df-rsqrt 10975  df-abs 10976  df-clim 11255  df-proddc 11527  df-dvds 11763  df-gcd 11911  df-prm 12075  df-phi 12178
This theorem is referenced by:  lgsfcl2  13978
  Copyright terms: Public domain W3C validator