| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strleun | Unicode version | ||
| Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| strleun.f |
|
| strleun.g |
|
| strleun.l |
|
| Ref | Expression |
|---|---|
| strleun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strleun.f |
. . . . . 6
| |
| 2 | isstructim 13012 |
. . . . . 6
| |
| 3 | 1, 2 | ax-mp 5 |
. . . . 5
|
| 4 | 3 | simp1i 1011 |
. . . 4
|
| 5 | 4 | simp1i 1011 |
. . 3
|
| 6 | strleun.g |
. . . . . 6
| |
| 7 | isstructim 13012 |
. . . . . 6
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . 5
|
| 9 | 8 | simp1i 1011 |
. . . 4
|
| 10 | 9 | simp2i 1012 |
. . 3
|
| 11 | 4 | simp3i 1013 |
. . . . 5
|
| 12 | 4 | simp2i 1012 |
. . . . . . 7
|
| 13 | 12 | nnrei 9087 |
. . . . . 6
|
| 14 | 9 | simp1i 1011 |
. . . . . . 7
|
| 15 | 14 | nnrei 9087 |
. . . . . 6
|
| 16 | strleun.l |
. . . . . 6
| |
| 17 | 13, 15, 16 | ltleii 8217 |
. . . . 5
|
| 18 | 5 | nnrei 9087 |
. . . . . 6
|
| 19 | 18, 13, 15 | letri 8222 |
. . . . 5
|
| 20 | 11, 17, 19 | mp2an 426 |
. . . 4
|
| 21 | 9 | simp3i 1013 |
. . . 4
|
| 22 | 10 | nnrei 9087 |
. . . . 5
|
| 23 | 18, 15, 22 | letri 8222 |
. . . 4
|
| 24 | 20, 21, 23 | mp2an 426 |
. . 3
|
| 25 | 5, 10, 24 | 3pm3.2i 1180 |
. 2
|
| 26 | 3 | simp2i 1012 |
. . . . . 6
|
| 27 | 8 | simp2i 1012 |
. . . . . 6
|
| 28 | 26, 27 | pm3.2i 272 |
. . . . 5
|
| 29 | difss 3310 |
. . . . . . . . 9
| |
| 30 | dmss 4899 |
. . . . . . . . 9
| |
| 31 | 29, 30 | ax-mp 5 |
. . . . . . . 8
|
| 32 | 3 | simp3i 1013 |
. . . . . . . 8
|
| 33 | 31, 32 | sstri 3213 |
. . . . . . 7
|
| 34 | difss 3310 |
. . . . . . . . 9
| |
| 35 | dmss 4899 |
. . . . . . . . 9
| |
| 36 | 34, 35 | ax-mp 5 |
. . . . . . . 8
|
| 37 | 8 | simp3i 1013 |
. . . . . . . 8
|
| 38 | 36, 37 | sstri 3213 |
. . . . . . 7
|
| 39 | ss2in 3412 |
. . . . . . 7
| |
| 40 | 33, 38, 39 | mp2an 426 |
. . . . . 6
|
| 41 | fzdisj 10216 |
. . . . . . 7
| |
| 42 | 16, 41 | ax-mp 5 |
. . . . . 6
|
| 43 | sseq0 3513 |
. . . . . 6
| |
| 44 | 40, 42, 43 | mp2an 426 |
. . . . 5
|
| 45 | funun 5338 |
. . . . 5
| |
| 46 | 28, 44, 45 | mp2an 426 |
. . . 4
|
| 47 | difundir 3437 |
. . . . 5
| |
| 48 | 47 | funeqi 5315 |
. . . 4
|
| 49 | 46, 48 | mpbir 146 |
. . 3
|
| 50 | structex 13010 |
. . . . 5
| |
| 51 | 1, 50 | ax-mp 5 |
. . . 4
|
| 52 | structex 13010 |
. . . . 5
| |
| 53 | 6, 52 | ax-mp 5 |
. . . 4
|
| 54 | 51, 53 | unex 4509 |
. . 3
|
| 55 | dmun 4907 |
. . . 4
| |
| 56 | 12 | nnzi 9435 |
. . . . . . . 8
|
| 57 | 10 | nnzi 9435 |
. . . . . . . 8
|
| 58 | 13, 15, 22 | letri 8222 |
. . . . . . . . 9
|
| 59 | 17, 21, 58 | mp2an 426 |
. . . . . . . 8
|
| 60 | eluz2 9696 |
. . . . . . . 8
| |
| 61 | 56, 57, 59, 60 | mpbir3an 1184 |
. . . . . . 7
|
| 62 | fzss2 10228 |
. . . . . . 7
| |
| 63 | 61, 62 | ax-mp 5 |
. . . . . 6
|
| 64 | 32, 63 | sstri 3213 |
. . . . 5
|
| 65 | 5 | nnzi 9435 |
. . . . . . . 8
|
| 66 | 14 | nnzi 9435 |
. . . . . . . 8
|
| 67 | eluz2 9696 |
. . . . . . . 8
| |
| 68 | 65, 66, 20, 67 | mpbir3an 1184 |
. . . . . . 7
|
| 69 | fzss1 10227 |
. . . . . . 7
| |
| 70 | 68, 69 | ax-mp 5 |
. . . . . 6
|
| 71 | 37, 70 | sstri 3213 |
. . . . 5
|
| 72 | 64, 71 | unssi 3359 |
. . . 4
|
| 73 | 55, 72 | eqsstri 3236 |
. . 3
|
| 74 | 49, 54, 73 | 3pm3.2i 1180 |
. 2
|
| 75 | isstructr 13013 |
. 2
| |
| 76 | 25, 74, 75 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-z 9415 df-uz 9691 df-fz 10173 df-struct 13000 |
| This theorem is referenced by: cnfldstr 14487 |
| Copyright terms: Public domain | W3C validator |