| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strleun | Unicode version | ||
| Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| strleun.f |
|
| strleun.g |
|
| strleun.l |
|
| Ref | Expression |
|---|---|
| strleun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strleun.f |
. . . . . 6
| |
| 2 | isstructim 12890 |
. . . . . 6
| |
| 3 | 1, 2 | ax-mp 5 |
. . . . 5
|
| 4 | 3 | simp1i 1009 |
. . . 4
|
| 5 | 4 | simp1i 1009 |
. . 3
|
| 6 | strleun.g |
. . . . . 6
| |
| 7 | isstructim 12890 |
. . . . . 6
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . 5
|
| 9 | 8 | simp1i 1009 |
. . . 4
|
| 10 | 9 | simp2i 1010 |
. . 3
|
| 11 | 4 | simp3i 1011 |
. . . . 5
|
| 12 | 4 | simp2i 1010 |
. . . . . . 7
|
| 13 | 12 | nnrei 9052 |
. . . . . 6
|
| 14 | 9 | simp1i 1009 |
. . . . . . 7
|
| 15 | 14 | nnrei 9052 |
. . . . . 6
|
| 16 | strleun.l |
. . . . . 6
| |
| 17 | 13, 15, 16 | ltleii 8182 |
. . . . 5
|
| 18 | 5 | nnrei 9052 |
. . . . . 6
|
| 19 | 18, 13, 15 | letri 8187 |
. . . . 5
|
| 20 | 11, 17, 19 | mp2an 426 |
. . . 4
|
| 21 | 9 | simp3i 1011 |
. . . 4
|
| 22 | 10 | nnrei 9052 |
. . . . 5
|
| 23 | 18, 15, 22 | letri 8187 |
. . . 4
|
| 24 | 20, 21, 23 | mp2an 426 |
. . 3
|
| 25 | 5, 10, 24 | 3pm3.2i 1178 |
. 2
|
| 26 | 3 | simp2i 1010 |
. . . . . 6
|
| 27 | 8 | simp2i 1010 |
. . . . . 6
|
| 28 | 26, 27 | pm3.2i 272 |
. . . . 5
|
| 29 | difss 3300 |
. . . . . . . . 9
| |
| 30 | dmss 4882 |
. . . . . . . . 9
| |
| 31 | 29, 30 | ax-mp 5 |
. . . . . . . 8
|
| 32 | 3 | simp3i 1011 |
. . . . . . . 8
|
| 33 | 31, 32 | sstri 3203 |
. . . . . . 7
|
| 34 | difss 3300 |
. . . . . . . . 9
| |
| 35 | dmss 4882 |
. . . . . . . . 9
| |
| 36 | 34, 35 | ax-mp 5 |
. . . . . . . 8
|
| 37 | 8 | simp3i 1011 |
. . . . . . . 8
|
| 38 | 36, 37 | sstri 3203 |
. . . . . . 7
|
| 39 | ss2in 3402 |
. . . . . . 7
| |
| 40 | 33, 38, 39 | mp2an 426 |
. . . . . 6
|
| 41 | fzdisj 10181 |
. . . . . . 7
| |
| 42 | 16, 41 | ax-mp 5 |
. . . . . 6
|
| 43 | sseq0 3503 |
. . . . . 6
| |
| 44 | 40, 42, 43 | mp2an 426 |
. . . . 5
|
| 45 | funun 5320 |
. . . . 5
| |
| 46 | 28, 44, 45 | mp2an 426 |
. . . 4
|
| 47 | difundir 3427 |
. . . . 5
| |
| 48 | 47 | funeqi 5297 |
. . . 4
|
| 49 | 46, 48 | mpbir 146 |
. . 3
|
| 50 | structex 12888 |
. . . . 5
| |
| 51 | 1, 50 | ax-mp 5 |
. . . 4
|
| 52 | structex 12888 |
. . . . 5
| |
| 53 | 6, 52 | ax-mp 5 |
. . . 4
|
| 54 | 51, 53 | unex 4492 |
. . 3
|
| 55 | dmun 4890 |
. . . 4
| |
| 56 | 12 | nnzi 9400 |
. . . . . . . 8
|
| 57 | 10 | nnzi 9400 |
. . . . . . . 8
|
| 58 | 13, 15, 22 | letri 8187 |
. . . . . . . . 9
|
| 59 | 17, 21, 58 | mp2an 426 |
. . . . . . . 8
|
| 60 | eluz2 9661 |
. . . . . . . 8
| |
| 61 | 56, 57, 59, 60 | mpbir3an 1182 |
. . . . . . 7
|
| 62 | fzss2 10193 |
. . . . . . 7
| |
| 63 | 61, 62 | ax-mp 5 |
. . . . . 6
|
| 64 | 32, 63 | sstri 3203 |
. . . . 5
|
| 65 | 5 | nnzi 9400 |
. . . . . . . 8
|
| 66 | 14 | nnzi 9400 |
. . . . . . . 8
|
| 67 | eluz2 9661 |
. . . . . . . 8
| |
| 68 | 65, 66, 20, 67 | mpbir3an 1182 |
. . . . . . 7
|
| 69 | fzss1 10192 |
. . . . . . 7
| |
| 70 | 68, 69 | ax-mp 5 |
. . . . . 6
|
| 71 | 37, 70 | sstri 3203 |
. . . . 5
|
| 72 | 64, 71 | unssi 3349 |
. . . 4
|
| 73 | 55, 72 | eqsstri 3226 |
. . 3
|
| 74 | 49, 54, 73 | 3pm3.2i 1178 |
. 2
|
| 75 | isstructr 12891 |
. 2
| |
| 76 | 25, 74, 75 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-z 9380 df-uz 9656 df-fz 10138 df-struct 12878 |
| This theorem is referenced by: cnfldstr 14364 |
| Copyright terms: Public domain | W3C validator |