| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strleun | Unicode version | ||
| Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| strleun.f |
|
| strleun.g |
|
| strleun.l |
|
| Ref | Expression |
|---|---|
| strleun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strleun.f |
. . . . . 6
| |
| 2 | isstructim 13054 |
. . . . . 6
| |
| 3 | 1, 2 | ax-mp 5 |
. . . . 5
|
| 4 | 3 | simp1i 1030 |
. . . 4
|
| 5 | 4 | simp1i 1030 |
. . 3
|
| 6 | strleun.g |
. . . . . 6
| |
| 7 | isstructim 13054 |
. . . . . 6
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . 5
|
| 9 | 8 | simp1i 1030 |
. . . 4
|
| 10 | 9 | simp2i 1031 |
. . 3
|
| 11 | 4 | simp3i 1032 |
. . . . 5
|
| 12 | 4 | simp2i 1031 |
. . . . . . 7
|
| 13 | 12 | nnrei 9127 |
. . . . . 6
|
| 14 | 9 | simp1i 1030 |
. . . . . . 7
|
| 15 | 14 | nnrei 9127 |
. . . . . 6
|
| 16 | strleun.l |
. . . . . 6
| |
| 17 | 13, 15, 16 | ltleii 8257 |
. . . . 5
|
| 18 | 5 | nnrei 9127 |
. . . . . 6
|
| 19 | 18, 13, 15 | letri 8262 |
. . . . 5
|
| 20 | 11, 17, 19 | mp2an 426 |
. . . 4
|
| 21 | 9 | simp3i 1032 |
. . . 4
|
| 22 | 10 | nnrei 9127 |
. . . . 5
|
| 23 | 18, 15, 22 | letri 8262 |
. . . 4
|
| 24 | 20, 21, 23 | mp2an 426 |
. . 3
|
| 25 | 5, 10, 24 | 3pm3.2i 1199 |
. 2
|
| 26 | 3 | simp2i 1031 |
. . . . . 6
|
| 27 | 8 | simp2i 1031 |
. . . . . 6
|
| 28 | 26, 27 | pm3.2i 272 |
. . . . 5
|
| 29 | difss 3330 |
. . . . . . . . 9
| |
| 30 | dmss 4922 |
. . . . . . . . 9
| |
| 31 | 29, 30 | ax-mp 5 |
. . . . . . . 8
|
| 32 | 3 | simp3i 1032 |
. . . . . . . 8
|
| 33 | 31, 32 | sstri 3233 |
. . . . . . 7
|
| 34 | difss 3330 |
. . . . . . . . 9
| |
| 35 | dmss 4922 |
. . . . . . . . 9
| |
| 36 | 34, 35 | ax-mp 5 |
. . . . . . . 8
|
| 37 | 8 | simp3i 1032 |
. . . . . . . 8
|
| 38 | 36, 37 | sstri 3233 |
. . . . . . 7
|
| 39 | ss2in 3432 |
. . . . . . 7
| |
| 40 | 33, 38, 39 | mp2an 426 |
. . . . . 6
|
| 41 | fzdisj 10256 |
. . . . . . 7
| |
| 42 | 16, 41 | ax-mp 5 |
. . . . . 6
|
| 43 | sseq0 3533 |
. . . . . 6
| |
| 44 | 40, 42, 43 | mp2an 426 |
. . . . 5
|
| 45 | funun 5362 |
. . . . 5
| |
| 46 | 28, 44, 45 | mp2an 426 |
. . . 4
|
| 47 | difundir 3457 |
. . . . 5
| |
| 48 | 47 | funeqi 5339 |
. . . 4
|
| 49 | 46, 48 | mpbir 146 |
. . 3
|
| 50 | structex 13052 |
. . . . 5
| |
| 51 | 1, 50 | ax-mp 5 |
. . . 4
|
| 52 | structex 13052 |
. . . . 5
| |
| 53 | 6, 52 | ax-mp 5 |
. . . 4
|
| 54 | 51, 53 | unex 4532 |
. . 3
|
| 55 | dmun 4930 |
. . . 4
| |
| 56 | 12 | nnzi 9475 |
. . . . . . . 8
|
| 57 | 10 | nnzi 9475 |
. . . . . . . 8
|
| 58 | 13, 15, 22 | letri 8262 |
. . . . . . . . 9
|
| 59 | 17, 21, 58 | mp2an 426 |
. . . . . . . 8
|
| 60 | eluz2 9736 |
. . . . . . . 8
| |
| 61 | 56, 57, 59, 60 | mpbir3an 1203 |
. . . . . . 7
|
| 62 | fzss2 10268 |
. . . . . . 7
| |
| 63 | 61, 62 | ax-mp 5 |
. . . . . 6
|
| 64 | 32, 63 | sstri 3233 |
. . . . 5
|
| 65 | 5 | nnzi 9475 |
. . . . . . . 8
|
| 66 | 14 | nnzi 9475 |
. . . . . . . 8
|
| 67 | eluz2 9736 |
. . . . . . . 8
| |
| 68 | 65, 66, 20, 67 | mpbir3an 1203 |
. . . . . . 7
|
| 69 | fzss1 10267 |
. . . . . . 7
| |
| 70 | 68, 69 | ax-mp 5 |
. . . . . 6
|
| 71 | 37, 70 | sstri 3233 |
. . . . 5
|
| 72 | 64, 71 | unssi 3379 |
. . . 4
|
| 73 | 55, 72 | eqsstri 3256 |
. . 3
|
| 74 | 49, 54, 73 | 3pm3.2i 1199 |
. 2
|
| 75 | isstructr 13055 |
. 2
| |
| 76 | 25, 74, 75 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-z 9455 df-uz 9731 df-fz 10213 df-struct 13042 |
| This theorem is referenced by: cnfldstr 14530 |
| Copyright terms: Public domain | W3C validator |