| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > strleun | Unicode version | ||
| Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| strleun.f | 
 | 
| strleun.g | 
 | 
| strleun.l | 
 | 
| Ref | Expression | 
|---|---|
| strleun | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | strleun.f | 
. . . . . 6
 | |
| 2 | isstructim 12692 | 
. . . . . 6
 | |
| 3 | 1, 2 | ax-mp 5 | 
. . . . 5
 | 
| 4 | 3 | simp1i 1008 | 
. . . 4
 | 
| 5 | 4 | simp1i 1008 | 
. . 3
 | 
| 6 | strleun.g | 
. . . . . 6
 | |
| 7 | isstructim 12692 | 
. . . . . 6
 | |
| 8 | 6, 7 | ax-mp 5 | 
. . . . 5
 | 
| 9 | 8 | simp1i 1008 | 
. . . 4
 | 
| 10 | 9 | simp2i 1009 | 
. . 3
 | 
| 11 | 4 | simp3i 1010 | 
. . . . 5
 | 
| 12 | 4 | simp2i 1009 | 
. . . . . . 7
 | 
| 13 | 12 | nnrei 8999 | 
. . . . . 6
 | 
| 14 | 9 | simp1i 1008 | 
. . . . . . 7
 | 
| 15 | 14 | nnrei 8999 | 
. . . . . 6
 | 
| 16 | strleun.l | 
. . . . . 6
 | |
| 17 | 13, 15, 16 | ltleii 8129 | 
. . . . 5
 | 
| 18 | 5 | nnrei 8999 | 
. . . . . 6
 | 
| 19 | 18, 13, 15 | letri 8134 | 
. . . . 5
 | 
| 20 | 11, 17, 19 | mp2an 426 | 
. . . 4
 | 
| 21 | 9 | simp3i 1010 | 
. . . 4
 | 
| 22 | 10 | nnrei 8999 | 
. . . . 5
 | 
| 23 | 18, 15, 22 | letri 8134 | 
. . . 4
 | 
| 24 | 20, 21, 23 | mp2an 426 | 
. . 3
 | 
| 25 | 5, 10, 24 | 3pm3.2i 1177 | 
. 2
 | 
| 26 | 3 | simp2i 1009 | 
. . . . . 6
 | 
| 27 | 8 | simp2i 1009 | 
. . . . . 6
 | 
| 28 | 26, 27 | pm3.2i 272 | 
. . . . 5
 | 
| 29 | difss 3289 | 
. . . . . . . . 9
 | |
| 30 | dmss 4865 | 
. . . . . . . . 9
 | |
| 31 | 29, 30 | ax-mp 5 | 
. . . . . . . 8
 | 
| 32 | 3 | simp3i 1010 | 
. . . . . . . 8
 | 
| 33 | 31, 32 | sstri 3192 | 
. . . . . . 7
 | 
| 34 | difss 3289 | 
. . . . . . . . 9
 | |
| 35 | dmss 4865 | 
. . . . . . . . 9
 | |
| 36 | 34, 35 | ax-mp 5 | 
. . . . . . . 8
 | 
| 37 | 8 | simp3i 1010 | 
. . . . . . . 8
 | 
| 38 | 36, 37 | sstri 3192 | 
. . . . . . 7
 | 
| 39 | ss2in 3391 | 
. . . . . . 7
 | |
| 40 | 33, 38, 39 | mp2an 426 | 
. . . . . 6
 | 
| 41 | fzdisj 10127 | 
. . . . . . 7
 | |
| 42 | 16, 41 | ax-mp 5 | 
. . . . . 6
 | 
| 43 | sseq0 3492 | 
. . . . . 6
 | |
| 44 | 40, 42, 43 | mp2an 426 | 
. . . . 5
 | 
| 45 | funun 5302 | 
. . . . 5
 | |
| 46 | 28, 44, 45 | mp2an 426 | 
. . . 4
 | 
| 47 | difundir 3416 | 
. . . . 5
 | |
| 48 | 47 | funeqi 5279 | 
. . . 4
 | 
| 49 | 46, 48 | mpbir 146 | 
. . 3
 | 
| 50 | structex 12690 | 
. . . . 5
 | |
| 51 | 1, 50 | ax-mp 5 | 
. . . 4
 | 
| 52 | structex 12690 | 
. . . . 5
 | |
| 53 | 6, 52 | ax-mp 5 | 
. . . 4
 | 
| 54 | 51, 53 | unex 4476 | 
. . 3
 | 
| 55 | dmun 4873 | 
. . . 4
 | |
| 56 | 12 | nnzi 9347 | 
. . . . . . . 8
 | 
| 57 | 10 | nnzi 9347 | 
. . . . . . . 8
 | 
| 58 | 13, 15, 22 | letri 8134 | 
. . . . . . . . 9
 | 
| 59 | 17, 21, 58 | mp2an 426 | 
. . . . . . . 8
 | 
| 60 | eluz2 9607 | 
. . . . . . . 8
 | |
| 61 | 56, 57, 59, 60 | mpbir3an 1181 | 
. . . . . . 7
 | 
| 62 | fzss2 10139 | 
. . . . . . 7
 | |
| 63 | 61, 62 | ax-mp 5 | 
. . . . . 6
 | 
| 64 | 32, 63 | sstri 3192 | 
. . . . 5
 | 
| 65 | 5 | nnzi 9347 | 
. . . . . . . 8
 | 
| 66 | 14 | nnzi 9347 | 
. . . . . . . 8
 | 
| 67 | eluz2 9607 | 
. . . . . . . 8
 | |
| 68 | 65, 66, 20, 67 | mpbir3an 1181 | 
. . . . . . 7
 | 
| 69 | fzss1 10138 | 
. . . . . . 7
 | |
| 70 | 68, 69 | ax-mp 5 | 
. . . . . 6
 | 
| 71 | 37, 70 | sstri 3192 | 
. . . . 5
 | 
| 72 | 64, 71 | unssi 3338 | 
. . . 4
 | 
| 73 | 55, 72 | eqsstri 3215 | 
. . 3
 | 
| 74 | 49, 54, 73 | 3pm3.2i 1177 | 
. 2
 | 
| 75 | isstructr 12693 | 
. 2
 | |
| 76 | 25, 74, 75 | mp2an 426 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-z 9327 df-uz 9602 df-fz 10084 df-struct 12680 | 
| This theorem is referenced by: cnfldstr 14114 | 
| Copyright terms: Public domain | W3C validator |