ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strleun Unicode version

Theorem strleun 12807
Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.)
Hypotheses
Ref Expression
strleun.f  |-  F Struct  <. A ,  B >.
strleun.g  |-  G Struct  <. C ,  D >.
strleun.l  |-  B  < 
C
Assertion
Ref Expression
strleun  |-  ( F  u.  G ) Struct  <. A ,  D >.

Proof of Theorem strleun
StepHypRef Expression
1 strleun.f . . . . . 6  |-  F Struct  <. A ,  B >.
2 isstructim 12717 . . . . . 6  |-  ( F Struct  <. A ,  B >.  -> 
( ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( A ... B
) ) )
31, 2ax-mp 5 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( A ... B
) )
43simp1i 1008 . . . 4  |-  ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )
54simp1i 1008 . . 3  |-  A  e.  NN
6 strleun.g . . . . . 6  |-  G Struct  <. C ,  D >.
7 isstructim 12717 . . . . . 6  |-  ( G Struct  <. C ,  D >.  -> 
( ( C  e.  NN  /\  D  e.  NN  /\  C  <_  D )  /\  Fun  ( G  \  { (/) } )  /\  dom  G  C_  ( C ... D
) ) )
86, 7ax-mp 5 . . . . 5  |-  ( ( C  e.  NN  /\  D  e.  NN  /\  C  <_  D )  /\  Fun  ( G  \  { (/) } )  /\  dom  G  C_  ( C ... D
) )
98simp1i 1008 . . . 4  |-  ( C  e.  NN  /\  D  e.  NN  /\  C  <_  D )
109simp2i 1009 . . 3  |-  D  e.  NN
114simp3i 1010 . . . . 5  |-  A  <_  B
124simp2i 1009 . . . . . . 7  |-  B  e.  NN
1312nnrei 9016 . . . . . 6  |-  B  e.  RR
149simp1i 1008 . . . . . . 7  |-  C  e.  NN
1514nnrei 9016 . . . . . 6  |-  C  e.  RR
16 strleun.l . . . . . 6  |-  B  < 
C
1713, 15, 16ltleii 8146 . . . . 5  |-  B  <_  C
185nnrei 9016 . . . . . 6  |-  A  e.  RR
1918, 13, 15letri 8151 . . . . 5  |-  ( ( A  <_  B  /\  B  <_  C )  ->  A  <_  C )
2011, 17, 19mp2an 426 . . . 4  |-  A  <_  C
219simp3i 1010 . . . 4  |-  C  <_  D
2210nnrei 9016 . . . . 5  |-  D  e.  RR
2318, 15, 22letri 8151 . . . 4  |-  ( ( A  <_  C  /\  C  <_  D )  ->  A  <_  D )
2420, 21, 23mp2an 426 . . 3  |-  A  <_  D
255, 10, 243pm3.2i 1177 . 2  |-  ( A  e.  NN  /\  D  e.  NN  /\  A  <_  D )
263simp2i 1009 . . . . . 6  |-  Fun  ( F  \  { (/) } )
278simp2i 1009 . . . . . 6  |-  Fun  ( G  \  { (/) } )
2826, 27pm3.2i 272 . . . . 5  |-  ( Fun  ( F  \  { (/)
} )  /\  Fun  ( G  \  { (/) } ) )
29 difss 3290 . . . . . . . . 9  |-  ( F 
\  { (/) } ) 
C_  F
30 dmss 4866 . . . . . . . . 9  |-  ( ( F  \  { (/) } )  C_  F  ->  dom  ( F  \  { (/)
} )  C_  dom  F )
3129, 30ax-mp 5 . . . . . . . 8  |-  dom  ( F  \  { (/) } ) 
C_  dom  F
323simp3i 1010 . . . . . . . 8  |-  dom  F  C_  ( A ... B
)
3331, 32sstri 3193 . . . . . . 7  |-  dom  ( F  \  { (/) } ) 
C_  ( A ... B )
34 difss 3290 . . . . . . . . 9  |-  ( G 
\  { (/) } ) 
C_  G
35 dmss 4866 . . . . . . . . 9  |-  ( ( G  \  { (/) } )  C_  G  ->  dom  ( G  \  { (/)
} )  C_  dom  G )
3634, 35ax-mp 5 . . . . . . . 8  |-  dom  ( G  \  { (/) } ) 
C_  dom  G
378simp3i 1010 . . . . . . . 8  |-  dom  G  C_  ( C ... D
)
3836, 37sstri 3193 . . . . . . 7  |-  dom  ( G  \  { (/) } ) 
C_  ( C ... D )
39 ss2in 3392 . . . . . . 7  |-  ( ( dom  ( F  \  { (/) } )  C_  ( A ... B )  /\  dom  ( G 
\  { (/) } ) 
C_  ( C ... D ) )  -> 
( dom  ( F  \  { (/) } )  i^i 
dom  ( G  \  { (/) } ) ) 
C_  ( ( A ... B )  i^i  ( C ... D
) ) )
4033, 38, 39mp2an 426 . . . . . 6  |-  ( dom  ( F  \  { (/)
} )  i^i  dom  ( G  \  { (/) } ) )  C_  (
( A ... B
)  i^i  ( C ... D ) )
41 fzdisj 10144 . . . . . . 7  |-  ( B  <  C  ->  (
( A ... B
)  i^i  ( C ... D ) )  =  (/) )
4216, 41ax-mp 5 . . . . . 6  |-  ( ( A ... B )  i^i  ( C ... D ) )  =  (/)
43 sseq0 3493 . . . . . 6  |-  ( ( ( dom  ( F 
\  { (/) } )  i^i  dom  ( G  \  { (/) } ) ) 
C_  ( ( A ... B )  i^i  ( C ... D
) )  /\  (
( A ... B
)  i^i  ( C ... D ) )  =  (/) )  ->  ( dom  ( F  \  { (/)
} )  i^i  dom  ( G  \  { (/) } ) )  =  (/) )
4440, 42, 43mp2an 426 . . . . 5  |-  ( dom  ( F  \  { (/)
} )  i^i  dom  ( G  \  { (/) } ) )  =  (/)
45 funun 5303 . . . . 5  |-  ( ( ( Fun  ( F 
\  { (/) } )  /\  Fun  ( G 
\  { (/) } ) )  /\  ( dom  ( F  \  { (/)
} )  i^i  dom  ( G  \  { (/) } ) )  =  (/) )  ->  Fun  ( ( F  \  { (/) } )  u.  ( G  \  { (/) } ) ) )
4628, 44, 45mp2an 426 . . . 4  |-  Fun  (
( F  \  { (/)
} )  u.  ( G  \  { (/) } ) )
47 difundir 3417 . . . . 5  |-  ( ( F  u.  G ) 
\  { (/) } )  =  ( ( F 
\  { (/) } )  u.  ( G  \  { (/) } ) )
4847funeqi 5280 . . . 4  |-  ( Fun  ( ( F  u.  G )  \  { (/)
} )  <->  Fun  ( ( F  \  { (/) } )  u.  ( G 
\  { (/) } ) ) )
4946, 48mpbir 146 . . 3  |-  Fun  (
( F  u.  G
)  \  { (/) } )
50 structex 12715 . . . . 5  |-  ( F Struct  <. A ,  B >.  ->  F  e.  _V )
511, 50ax-mp 5 . . . 4  |-  F  e. 
_V
52 structex 12715 . . . . 5  |-  ( G Struct  <. C ,  D >.  ->  G  e.  _V )
536, 52ax-mp 5 . . . 4  |-  G  e. 
_V
5451, 53unex 4477 . . 3  |-  ( F  u.  G )  e. 
_V
55 dmun 4874 . . . 4  |-  dom  ( F  u.  G )  =  ( dom  F  u.  dom  G )
5612nnzi 9364 . . . . . . . 8  |-  B  e.  ZZ
5710nnzi 9364 . . . . . . . 8  |-  D  e.  ZZ
5813, 15, 22letri 8151 . . . . . . . . 9  |-  ( ( B  <_  C  /\  C  <_  D )  ->  B  <_  D )
5917, 21, 58mp2an 426 . . . . . . . 8  |-  B  <_  D
60 eluz2 9624 . . . . . . . 8  |-  ( D  e.  ( ZZ>= `  B
)  <->  ( B  e.  ZZ  /\  D  e.  ZZ  /\  B  <_  D ) )
6156, 57, 59, 60mpbir3an 1181 . . . . . . 7  |-  D  e.  ( ZZ>= `  B )
62 fzss2 10156 . . . . . . 7  |-  ( D  e.  ( ZZ>= `  B
)  ->  ( A ... B )  C_  ( A ... D ) )
6361, 62ax-mp 5 . . . . . 6  |-  ( A ... B )  C_  ( A ... D )
6432, 63sstri 3193 . . . . 5  |-  dom  F  C_  ( A ... D
)
655nnzi 9364 . . . . . . . 8  |-  A  e.  ZZ
6614nnzi 9364 . . . . . . . 8  |-  C  e.  ZZ
67 eluz2 9624 . . . . . . . 8  |-  ( C  e.  ( ZZ>= `  A
)  <->  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )
6865, 66, 20, 67mpbir3an 1181 . . . . . . 7  |-  C  e.  ( ZZ>= `  A )
69 fzss1 10155 . . . . . . 7  |-  ( C  e.  ( ZZ>= `  A
)  ->  ( C ... D )  C_  ( A ... D ) )
7068, 69ax-mp 5 . . . . . 6  |-  ( C ... D )  C_  ( A ... D )
7137, 70sstri 3193 . . . . 5  |-  dom  G  C_  ( A ... D
)
7264, 71unssi 3339 . . . 4  |-  ( dom 
F  u.  dom  G
)  C_  ( A ... D )
7355, 72eqsstri 3216 . . 3  |-  dom  ( F  u.  G )  C_  ( A ... D
)
7449, 54, 733pm3.2i 1177 . 2  |-  ( Fun  ( ( F  u.  G )  \  { (/)
} )  /\  ( F  u.  G )  e.  _V  /\  dom  ( F  u.  G )  C_  ( A ... D
) )
75 isstructr 12718 . 2  |-  ( ( ( A  e.  NN  /\  D  e.  NN  /\  A  <_  D )  /\  ( Fun  ( ( F  u.  G )  \  { (/) } )  /\  ( F  u.  G
)  e.  _V  /\  dom  ( F  u.  G
)  C_  ( A ... D ) ) )  ->  ( F  u.  G ) Struct  <. A ,  D >. )
7625, 74, 75mp2an 426 1  |-  ( F  u.  G ) Struct  <. A ,  D >.
Colors of variables: wff set class
Syntax hints:    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   _Vcvv 2763    \ cdif 3154    u. cun 3155    i^i cin 3156    C_ wss 3157   (/)c0 3451   {csn 3623   <.cop 3626   class class class wbr 4034   dom cdm 4664   Fun wfun 5253   ` cfv 5259  (class class class)co 5925    < clt 8078    <_ cle 8079   NNcn 9007   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100   Struct cstr 12699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-z 9344  df-uz 9619  df-fz 10101  df-struct 12705
This theorem is referenced by:  cnfldstr  14190
  Copyright terms: Public domain W3C validator