ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem2 Unicode version

Theorem lgsdir2lem2 15702
Description: Lemma for lgsdir2 15706. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdir2lem2.1  |-  ( K  e.  ZZ  /\  2  ||  ( K  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... K
)  ->  ( A  mod  8 )  e.  S
) ) )
lgsdir2lem2.2  |-  M  =  ( K  +  1 )
lgsdir2lem2.3  |-  N  =  ( M  +  1 )
lgsdir2lem2.4  |-  N  e.  S
Assertion
Ref Expression
lgsdir2lem2  |-  ( N  e.  ZZ  /\  2  ||  ( N  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... N
)  ->  ( A  mod  8 )  e.  S
) ) )

Proof of Theorem lgsdir2lem2
StepHypRef Expression
1 lgsdir2lem2.3 . . 3  |-  N  =  ( M  +  1 )
2 lgsdir2lem2.2 . . . . 5  |-  M  =  ( K  +  1 )
3 lgsdir2lem2.1 . . . . . . 7  |-  ( K  e.  ZZ  /\  2  ||  ( K  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... K
)  ->  ( A  mod  8 )  e.  S
) ) )
43simp1i 1030 . . . . . 6  |-  K  e.  ZZ
5 peano2z 9478 . . . . . 6  |-  ( K  e.  ZZ  ->  ( K  +  1 )  e.  ZZ )
64, 5ax-mp 5 . . . . 5  |-  ( K  +  1 )  e.  ZZ
72, 6eqeltri 2302 . . . 4  |-  M  e.  ZZ
8 peano2z 9478 . . . 4  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
97, 8ax-mp 5 . . 3  |-  ( M  +  1 )  e.  ZZ
101, 9eqeltri 2302 . 2  |-  N  e.  ZZ
113simp2i 1031 . . . 4  |-  2  ||  ( K  +  1 )
12 2z 9470 . . . . 5  |-  2  e.  ZZ
13 dvdsadd 12342 . . . . 5  |-  ( ( 2  e.  ZZ  /\  ( K  +  1
)  e.  ZZ )  ->  ( 2  ||  ( K  +  1
)  <->  2  ||  (
2  +  ( K  +  1 ) ) ) )
1412, 6, 13mp2an 426 . . . 4  |-  ( 2 
||  ( K  + 
1 )  <->  2  ||  ( 2  +  ( K  +  1 ) ) )
1511, 14mpbi 145 . . 3  |-  2  ||  ( 2  +  ( K  +  1 ) )
16 zcn 9447 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  K  e.  CC )
174, 16ax-mp 5 . . . . . . . . . 10  |-  K  e.  CC
18 ax-1cn 8088 . . . . . . . . . 10  |-  1  e.  CC
1917, 18addcomi 8286 . . . . . . . . 9  |-  ( K  +  1 )  =  ( 1  +  K
)
202, 19eqtri 2250 . . . . . . . 8  |-  M  =  ( 1  +  K
)
2120oveq1i 6010 . . . . . . 7  |-  ( M  +  1 )  =  ( ( 1  +  K )  +  1 )
221, 21eqtri 2250 . . . . . 6  |-  N  =  ( ( 1  +  K )  +  1 )
23 df-2 9165 . . . . . . . 8  |-  2  =  ( 1  +  1 )
2423oveq1i 6010 . . . . . . 7  |-  ( 2  +  K )  =  ( ( 1  +  1 )  +  K
)
2518, 17, 18add32i 8306 . . . . . . 7  |-  ( ( 1  +  K )  +  1 )  =  ( ( 1  +  1 )  +  K
)
2624, 25eqtr4i 2253 . . . . . 6  |-  ( 2  +  K )  =  ( ( 1  +  K )  +  1 )
2722, 26eqtr4i 2253 . . . . 5  |-  N  =  ( 2  +  K
)
2827oveq1i 6010 . . . 4  |-  ( N  +  1 )  =  ( ( 2  +  K )  +  1 )
29 2cn 9177 . . . . 5  |-  2  e.  CC
3029, 17, 18addassi 8150 . . . 4  |-  ( ( 2  +  K )  +  1 )  =  ( 2  +  ( K  +  1 ) )
3128, 30eqtri 2250 . . 3  |-  ( N  +  1 )  =  ( 2  +  ( K  +  1 ) )
3215, 31breqtrri 4109 . 2  |-  2  ||  ( N  +  1 )
33 elfzuz2 10221 . . . . 5  |-  ( ( A  mod  8 )  e.  ( 0 ... N )  ->  N  e.  ( ZZ>= `  0 )
)
34 fzm1 10292 . . . . 5  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( ( A  mod  8 )  e.  ( 0 ... N
)  <->  ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  \/  ( A  mod  8 )  =  N ) ) )
3533, 34syl 14 . . . 4  |-  ( ( A  mod  8 )  e.  ( 0 ... N )  ->  (
( A  mod  8
)  e.  ( 0 ... N )  <->  ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  \/  ( A  mod  8 )  =  N ) ) )
3635ibi 176 . . 3  |-  ( ( A  mod  8 )  e.  ( 0 ... N )  ->  (
( A  mod  8
)  e.  ( 0 ... ( N  - 
1 ) )  \/  ( A  mod  8
)  =  N ) )
37 elfzuz2 10221 . . . . . . . 8  |-  ( ( A  mod  8 )  e.  ( 0 ... M )  ->  M  e.  ( ZZ>= `  0 )
)
38 fzm1 10292 . . . . . . . 8  |-  ( M  e.  ( ZZ>= `  0
)  ->  ( ( A  mod  8 )  e.  ( 0 ... M
)  <->  ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  \/  ( A  mod  8 )  =  M ) ) )
3937, 38syl 14 . . . . . . 7  |-  ( ( A  mod  8 )  e.  ( 0 ... M )  ->  (
( A  mod  8
)  e.  ( 0 ... M )  <->  ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  \/  ( A  mod  8 )  =  M ) ) )
4039ibi 176 . . . . . 6  |-  ( ( A  mod  8 )  e.  ( 0 ... M )  ->  (
( A  mod  8
)  e.  ( 0 ... ( M  - 
1 ) )  \/  ( A  mod  8
)  =  M ) )
41 zcn 9447 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  CC )
427, 41ax-mp 5 . . . . . . . 8  |-  M  e.  CC
4342, 18, 1mvrraddi 8359 . . . . . . 7  |-  ( N  -  1 )  =  M
4443oveq2i 6011 . . . . . 6  |-  ( 0 ... ( N  - 
1 ) )  =  ( 0 ... M
)
4540, 44eleq2s 2324 . . . . 5  |-  ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  ->  (
( A  mod  8
)  e.  ( 0 ... ( M  - 
1 ) )  \/  ( A  mod  8
)  =  M ) )
4617, 18, 2mvrraddi 8359 . . . . . . . . 9  |-  ( M  -  1 )  =  K
4746oveq2i 6011 . . . . . . . 8  |-  ( 0 ... ( M  - 
1 ) )  =  ( 0 ... K
)
4847eleq2i 2296 . . . . . . 7  |-  ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  <->  ( A  mod  8 )  e.  ( 0 ... K ) )
493simp3i 1032 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... K
)  ->  ( A  mod  8 )  e.  S
) )
5048, 49biimtrid 152 . . . . . 6  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  ->  ( A  mod  8 )  e.  S
) )
51 2nn 9268 . . . . . . . . . . 11  |-  2  e.  NN
52 8nn 9274 . . . . . . . . . . 11  |-  8  e.  NN
53 4z 9472 . . . . . . . . . . . . . 14  |-  4  e.  ZZ
54 dvdsmul2 12320 . . . . . . . . . . . . . 14  |-  ( ( 4  e.  ZZ  /\  2  e.  ZZ )  ->  2  ||  ( 4  x.  2 ) )
5553, 12, 54mp2an 426 . . . . . . . . . . . . 13  |-  2  ||  ( 4  x.  2 )
56 4t2e8 9265 . . . . . . . . . . . . 13  |-  ( 4  x.  2 )  =  8
5755, 56breqtri 4107 . . . . . . . . . . . 12  |-  2  ||  8
58 dvdsmod 12368 . . . . . . . . . . . 12  |-  ( ( ( 2  e.  NN  /\  8  e.  NN  /\  A  e.  ZZ )  /\  2  ||  8 )  ->  ( 2  ||  ( A  mod  8
)  <->  2  ||  A
) )
5957, 58mpan2 425 . . . . . . . . . . 11  |-  ( ( 2  e.  NN  /\  8  e.  NN  /\  A  e.  ZZ )  ->  (
2  ||  ( A  mod  8 )  <->  2  ||  A ) )
6051, 52, 59mp3an12 1361 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  (
2  ||  ( A  mod  8 )  <->  2  ||  A ) )
6160notbid 671 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  ( -.  2  ||  ( A  mod  8 )  <->  -.  2  ||  A ) )
6261biimpar 297 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  -.  2  ||  ( A  mod  8
) )
6311, 2breqtrri 4109 . . . . . . . . 9  |-  2  ||  M
64 id 19 . . . . . . . . 9  |-  ( ( A  mod  8 )  =  M  ->  ( A  mod  8 )  =  M )
6563, 64breqtrrid 4120 . . . . . . . 8  |-  ( ( A  mod  8 )  =  M  ->  2  ||  ( A  mod  8
) )
6662, 65nsyl 631 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  -.  ( A  mod  8 )  =  M )
6766pm2.21d 622 . . . . . 6  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  =  M  ->  ( A  mod  8 )  e.  S
) )
6850, 67jaod 722 . . . . 5  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  \/  ( A  mod  8 )  =  M )  ->  ( A  mod  8 )  e.  S ) )
6945, 68syl5 32 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  ->  ( A  mod  8 )  e.  S
) )
70 lgsdir2lem2.4 . . . . . 6  |-  N  e.  S
71 eleq1 2292 . . . . . 6  |-  ( ( A  mod  8 )  =  N  ->  (
( A  mod  8
)  e.  S  <->  N  e.  S ) )
7270, 71mpbiri 168 . . . . 5  |-  ( ( A  mod  8 )  =  N  ->  ( A  mod  8 )  e.  S )
7372a1i 9 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  =  N  ->  ( A  mod  8 )  e.  S
) )
7469, 73jaod 722 . . 3  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  \/  ( A  mod  8 )  =  N )  ->  ( A  mod  8 )  e.  S ) )
7536, 74syl5 32 . 2  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... N
)  ->  ( A  mod  8 )  e.  S
) )
7610, 32, 753pm3.2i 1199 1  |-  ( N  e.  ZZ  /\  2  ||  ( N  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... N
)  ->  ( A  mod  8 )  e.  S
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   CCcc 7993   0cc0 7995   1c1 7996    + caddc 7998    x. cmul 8000    - cmin 8313   NNcn 9106   2c2 9157   4c4 9159   8c8 9163   ZZcz 9442   ZZ>=cuz 9718   ...cfz 10200    mod cmo 10539    || cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fl 10485  df-mod 10540  df-dvds 12294
This theorem is referenced by:  lgsdir2lem3  15703
  Copyright terms: Public domain W3C validator