| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsdir2lem2 | Unicode version | ||
| Description: Lemma for lgsdir2 15428. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgsdir2lem2.1 |
|
| lgsdir2lem2.2 |
|
| lgsdir2lem2.3 |
|
| lgsdir2lem2.4 |
|
| Ref | Expression |
|---|---|
| lgsdir2lem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lgsdir2lem2.3 |
. . 3
| |
| 2 | lgsdir2lem2.2 |
. . . . 5
| |
| 3 | lgsdir2lem2.1 |
. . . . . . 7
| |
| 4 | 3 | simp1i 1008 |
. . . . . 6
|
| 5 | peano2z 9390 |
. . . . . 6
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . 5
|
| 7 | 2, 6 | eqeltri 2277 |
. . . 4
|
| 8 | peano2z 9390 |
. . . 4
| |
| 9 | 7, 8 | ax-mp 5 |
. . 3
|
| 10 | 1, 9 | eqeltri 2277 |
. 2
|
| 11 | 3 | simp2i 1009 |
. . . 4
|
| 12 | 2z 9382 |
. . . . 5
| |
| 13 | dvdsadd 12066 |
. . . . 5
| |
| 14 | 12, 6, 13 | mp2an 426 |
. . . 4
|
| 15 | 11, 14 | mpbi 145 |
. . 3
|
| 16 | zcn 9359 |
. . . . . . . . . . 11
| |
| 17 | 4, 16 | ax-mp 5 |
. . . . . . . . . 10
|
| 18 | ax-1cn 8000 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | addcomi 8198 |
. . . . . . . . 9
|
| 20 | 2, 19 | eqtri 2225 |
. . . . . . . 8
|
| 21 | 20 | oveq1i 5944 |
. . . . . . 7
|
| 22 | 1, 21 | eqtri 2225 |
. . . . . 6
|
| 23 | df-2 9077 |
. . . . . . . 8
| |
| 24 | 23 | oveq1i 5944 |
. . . . . . 7
|
| 25 | 18, 17, 18 | add32i 8218 |
. . . . . . 7
|
| 26 | 24, 25 | eqtr4i 2228 |
. . . . . 6
|
| 27 | 22, 26 | eqtr4i 2228 |
. . . . 5
|
| 28 | 27 | oveq1i 5944 |
. . . 4
|
| 29 | 2cn 9089 |
. . . . 5
| |
| 30 | 29, 17, 18 | addassi 8062 |
. . . 4
|
| 31 | 28, 30 | eqtri 2225 |
. . 3
|
| 32 | 15, 31 | breqtrri 4070 |
. 2
|
| 33 | elfzuz2 10133 |
. . . . 5
| |
| 34 | fzm1 10204 |
. . . . 5
| |
| 35 | 33, 34 | syl 14 |
. . . 4
|
| 36 | 35 | ibi 176 |
. . 3
|
| 37 | elfzuz2 10133 |
. . . . . . . 8
| |
| 38 | fzm1 10204 |
. . . . . . . 8
| |
| 39 | 37, 38 | syl 14 |
. . . . . . 7
|
| 40 | 39 | ibi 176 |
. . . . . 6
|
| 41 | zcn 9359 |
. . . . . . . . 9
| |
| 42 | 7, 41 | ax-mp 5 |
. . . . . . . 8
|
| 43 | 42, 18, 1 | mvrraddi 8271 |
. . . . . . 7
|
| 44 | 43 | oveq2i 5945 |
. . . . . 6
|
| 45 | 40, 44 | eleq2s 2299 |
. . . . 5
|
| 46 | 17, 18, 2 | mvrraddi 8271 |
. . . . . . . . 9
|
| 47 | 46 | oveq2i 5945 |
. . . . . . . 8
|
| 48 | 47 | eleq2i 2271 |
. . . . . . 7
|
| 49 | 3 | simp3i 1010 |
. . . . . . 7
|
| 50 | 48, 49 | biimtrid 152 |
. . . . . 6
|
| 51 | 2nn 9180 |
. . . . . . . . . . 11
| |
| 52 | 8nn 9186 |
. . . . . . . . . . 11
| |
| 53 | 4z 9384 |
. . . . . . . . . . . . . 14
| |
| 54 | dvdsmul2 12044 |
. . . . . . . . . . . . . 14
| |
| 55 | 53, 12, 54 | mp2an 426 |
. . . . . . . . . . . . 13
|
| 56 | 4t2e8 9177 |
. . . . . . . . . . . . 13
| |
| 57 | 55, 56 | breqtri 4068 |
. . . . . . . . . . . 12
|
| 58 | dvdsmod 12092 |
. . . . . . . . . . . 12
| |
| 59 | 57, 58 | mpan2 425 |
. . . . . . . . . . 11
|
| 60 | 51, 52, 59 | mp3an12 1339 |
. . . . . . . . . 10
|
| 61 | 60 | notbid 668 |
. . . . . . . . 9
|
| 62 | 61 | biimpar 297 |
. . . . . . . 8
|
| 63 | 11, 2 | breqtrri 4070 |
. . . . . . . . 9
|
| 64 | id 19 |
. . . . . . . . 9
| |
| 65 | 63, 64 | breqtrrid 4081 |
. . . . . . . 8
|
| 66 | 62, 65 | nsyl 629 |
. . . . . . 7
|
| 67 | 66 | pm2.21d 620 |
. . . . . 6
|
| 68 | 50, 67 | jaod 718 |
. . . . 5
|
| 69 | 45, 68 | syl5 32 |
. . . 4
|
| 70 | lgsdir2lem2.4 |
. . . . . 6
| |
| 71 | eleq1 2267 |
. . . . . 6
| |
| 72 | 70, 71 | mpbiri 168 |
. . . . 5
|
| 73 | 72 | a1i 9 |
. . . 4
|
| 74 | 69, 73 | jaod 718 |
. . 3
|
| 75 | 36, 74 | syl5 32 |
. 2
|
| 76 | 10, 32, 75 | 3pm3.2i 1177 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 ax-arch 8026 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-po 4341 df-iso 4342 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-7 9082 df-8 9083 df-n0 9278 df-z 9355 df-uz 9631 df-q 9723 df-rp 9758 df-fz 10113 df-fl 10394 df-mod 10449 df-dvds 12018 |
| This theorem is referenced by: lgsdir2lem3 15425 |
| Copyright terms: Public domain | W3C validator |