| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsdir2lem2 | Unicode version | ||
| Description: Lemma for lgsdir2 15585. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgsdir2lem2.1 |
|
| lgsdir2lem2.2 |
|
| lgsdir2lem2.3 |
|
| lgsdir2lem2.4 |
|
| Ref | Expression |
|---|---|
| lgsdir2lem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lgsdir2lem2.3 |
. . 3
| |
| 2 | lgsdir2lem2.2 |
. . . . 5
| |
| 3 | lgsdir2lem2.1 |
. . . . . . 7
| |
| 4 | 3 | simp1i 1009 |
. . . . . 6
|
| 5 | peano2z 9428 |
. . . . . 6
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . 5
|
| 7 | 2, 6 | eqeltri 2279 |
. . . 4
|
| 8 | peano2z 9428 |
. . . 4
| |
| 9 | 7, 8 | ax-mp 5 |
. . 3
|
| 10 | 1, 9 | eqeltri 2279 |
. 2
|
| 11 | 3 | simp2i 1010 |
. . . 4
|
| 12 | 2z 9420 |
. . . . 5
| |
| 13 | dvdsadd 12222 |
. . . . 5
| |
| 14 | 12, 6, 13 | mp2an 426 |
. . . 4
|
| 15 | 11, 14 | mpbi 145 |
. . 3
|
| 16 | zcn 9397 |
. . . . . . . . . . 11
| |
| 17 | 4, 16 | ax-mp 5 |
. . . . . . . . . 10
|
| 18 | ax-1cn 8038 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | addcomi 8236 |
. . . . . . . . 9
|
| 20 | 2, 19 | eqtri 2227 |
. . . . . . . 8
|
| 21 | 20 | oveq1i 5967 |
. . . . . . 7
|
| 22 | 1, 21 | eqtri 2227 |
. . . . . 6
|
| 23 | df-2 9115 |
. . . . . . . 8
| |
| 24 | 23 | oveq1i 5967 |
. . . . . . 7
|
| 25 | 18, 17, 18 | add32i 8256 |
. . . . . . 7
|
| 26 | 24, 25 | eqtr4i 2230 |
. . . . . 6
|
| 27 | 22, 26 | eqtr4i 2230 |
. . . . 5
|
| 28 | 27 | oveq1i 5967 |
. . . 4
|
| 29 | 2cn 9127 |
. . . . 5
| |
| 30 | 29, 17, 18 | addassi 8100 |
. . . 4
|
| 31 | 28, 30 | eqtri 2227 |
. . 3
|
| 32 | 15, 31 | breqtrri 4078 |
. 2
|
| 33 | elfzuz2 10171 |
. . . . 5
| |
| 34 | fzm1 10242 |
. . . . 5
| |
| 35 | 33, 34 | syl 14 |
. . . 4
|
| 36 | 35 | ibi 176 |
. . 3
|
| 37 | elfzuz2 10171 |
. . . . . . . 8
| |
| 38 | fzm1 10242 |
. . . . . . . 8
| |
| 39 | 37, 38 | syl 14 |
. . . . . . 7
|
| 40 | 39 | ibi 176 |
. . . . . 6
|
| 41 | zcn 9397 |
. . . . . . . . 9
| |
| 42 | 7, 41 | ax-mp 5 |
. . . . . . . 8
|
| 43 | 42, 18, 1 | mvrraddi 8309 |
. . . . . . 7
|
| 44 | 43 | oveq2i 5968 |
. . . . . 6
|
| 45 | 40, 44 | eleq2s 2301 |
. . . . 5
|
| 46 | 17, 18, 2 | mvrraddi 8309 |
. . . . . . . . 9
|
| 47 | 46 | oveq2i 5968 |
. . . . . . . 8
|
| 48 | 47 | eleq2i 2273 |
. . . . . . 7
|
| 49 | 3 | simp3i 1011 |
. . . . . . 7
|
| 50 | 48, 49 | biimtrid 152 |
. . . . . 6
|
| 51 | 2nn 9218 |
. . . . . . . . . . 11
| |
| 52 | 8nn 9224 |
. . . . . . . . . . 11
| |
| 53 | 4z 9422 |
. . . . . . . . . . . . . 14
| |
| 54 | dvdsmul2 12200 |
. . . . . . . . . . . . . 14
| |
| 55 | 53, 12, 54 | mp2an 426 |
. . . . . . . . . . . . 13
|
| 56 | 4t2e8 9215 |
. . . . . . . . . . . . 13
| |
| 57 | 55, 56 | breqtri 4076 |
. . . . . . . . . . . 12
|
| 58 | dvdsmod 12248 |
. . . . . . . . . . . 12
| |
| 59 | 57, 58 | mpan2 425 |
. . . . . . . . . . 11
|
| 60 | 51, 52, 59 | mp3an12 1340 |
. . . . . . . . . 10
|
| 61 | 60 | notbid 669 |
. . . . . . . . 9
|
| 62 | 61 | biimpar 297 |
. . . . . . . 8
|
| 63 | 11, 2 | breqtrri 4078 |
. . . . . . . . 9
|
| 64 | id 19 |
. . . . . . . . 9
| |
| 65 | 63, 64 | breqtrrid 4089 |
. . . . . . . 8
|
| 66 | 62, 65 | nsyl 629 |
. . . . . . 7
|
| 67 | 66 | pm2.21d 620 |
. . . . . 6
|
| 68 | 50, 67 | jaod 719 |
. . . . 5
|
| 69 | 45, 68 | syl5 32 |
. . . 4
|
| 70 | lgsdir2lem2.4 |
. . . . . 6
| |
| 71 | eleq1 2269 |
. . . . . 6
| |
| 72 | 70, 71 | mpbiri 168 |
. . . . 5
|
| 73 | 72 | a1i 9 |
. . . 4
|
| 74 | 69, 73 | jaod 719 |
. . 3
|
| 75 | 36, 74 | syl5 32 |
. 2
|
| 76 | 10, 32, 75 | 3pm3.2i 1178 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-po 4351 df-iso 4352 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-fz 10151 df-fl 10435 df-mod 10490 df-dvds 12174 |
| This theorem is referenced by: lgsdir2lem3 15582 |
| Copyright terms: Public domain | W3C validator |