ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem2 Unicode version

Theorem lgsdir2lem2 15354
Description: Lemma for lgsdir2 15358. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdir2lem2.1  |-  ( K  e.  ZZ  /\  2  ||  ( K  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... K
)  ->  ( A  mod  8 )  e.  S
) ) )
lgsdir2lem2.2  |-  M  =  ( K  +  1 )
lgsdir2lem2.3  |-  N  =  ( M  +  1 )
lgsdir2lem2.4  |-  N  e.  S
Assertion
Ref Expression
lgsdir2lem2  |-  ( N  e.  ZZ  /\  2  ||  ( N  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... N
)  ->  ( A  mod  8 )  e.  S
) ) )

Proof of Theorem lgsdir2lem2
StepHypRef Expression
1 lgsdir2lem2.3 . . 3  |-  N  =  ( M  +  1 )
2 lgsdir2lem2.2 . . . . 5  |-  M  =  ( K  +  1 )
3 lgsdir2lem2.1 . . . . . . 7  |-  ( K  e.  ZZ  /\  2  ||  ( K  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... K
)  ->  ( A  mod  8 )  e.  S
) ) )
43simp1i 1008 . . . . . 6  |-  K  e.  ZZ
5 peano2z 9379 . . . . . 6  |-  ( K  e.  ZZ  ->  ( K  +  1 )  e.  ZZ )
64, 5ax-mp 5 . . . . 5  |-  ( K  +  1 )  e.  ZZ
72, 6eqeltri 2269 . . . 4  |-  M  e.  ZZ
8 peano2z 9379 . . . 4  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
97, 8ax-mp 5 . . 3  |-  ( M  +  1 )  e.  ZZ
101, 9eqeltri 2269 . 2  |-  N  e.  ZZ
113simp2i 1009 . . . 4  |-  2  ||  ( K  +  1 )
12 2z 9371 . . . . 5  |-  2  e.  ZZ
13 dvdsadd 12018 . . . . 5  |-  ( ( 2  e.  ZZ  /\  ( K  +  1
)  e.  ZZ )  ->  ( 2  ||  ( K  +  1
)  <->  2  ||  (
2  +  ( K  +  1 ) ) ) )
1412, 6, 13mp2an 426 . . . 4  |-  ( 2 
||  ( K  + 
1 )  <->  2  ||  ( 2  +  ( K  +  1 ) ) )
1511, 14mpbi 145 . . 3  |-  2  ||  ( 2  +  ( K  +  1 ) )
16 zcn 9348 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  K  e.  CC )
174, 16ax-mp 5 . . . . . . . . . 10  |-  K  e.  CC
18 ax-1cn 7989 . . . . . . . . . 10  |-  1  e.  CC
1917, 18addcomi 8187 . . . . . . . . 9  |-  ( K  +  1 )  =  ( 1  +  K
)
202, 19eqtri 2217 . . . . . . . 8  |-  M  =  ( 1  +  K
)
2120oveq1i 5935 . . . . . . 7  |-  ( M  +  1 )  =  ( ( 1  +  K )  +  1 )
221, 21eqtri 2217 . . . . . 6  |-  N  =  ( ( 1  +  K )  +  1 )
23 df-2 9066 . . . . . . . 8  |-  2  =  ( 1  +  1 )
2423oveq1i 5935 . . . . . . 7  |-  ( 2  +  K )  =  ( ( 1  +  1 )  +  K
)
2518, 17, 18add32i 8207 . . . . . . 7  |-  ( ( 1  +  K )  +  1 )  =  ( ( 1  +  1 )  +  K
)
2624, 25eqtr4i 2220 . . . . . 6  |-  ( 2  +  K )  =  ( ( 1  +  K )  +  1 )
2722, 26eqtr4i 2220 . . . . 5  |-  N  =  ( 2  +  K
)
2827oveq1i 5935 . . . 4  |-  ( N  +  1 )  =  ( ( 2  +  K )  +  1 )
29 2cn 9078 . . . . 5  |-  2  e.  CC
3029, 17, 18addassi 8051 . . . 4  |-  ( ( 2  +  K )  +  1 )  =  ( 2  +  ( K  +  1 ) )
3128, 30eqtri 2217 . . 3  |-  ( N  +  1 )  =  ( 2  +  ( K  +  1 ) )
3215, 31breqtrri 4061 . 2  |-  2  ||  ( N  +  1 )
33 elfzuz2 10121 . . . . 5  |-  ( ( A  mod  8 )  e.  ( 0 ... N )  ->  N  e.  ( ZZ>= `  0 )
)
34 fzm1 10192 . . . . 5  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( ( A  mod  8 )  e.  ( 0 ... N
)  <->  ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  \/  ( A  mod  8 )  =  N ) ) )
3533, 34syl 14 . . . 4  |-  ( ( A  mod  8 )  e.  ( 0 ... N )  ->  (
( A  mod  8
)  e.  ( 0 ... N )  <->  ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  \/  ( A  mod  8 )  =  N ) ) )
3635ibi 176 . . 3  |-  ( ( A  mod  8 )  e.  ( 0 ... N )  ->  (
( A  mod  8
)  e.  ( 0 ... ( N  - 
1 ) )  \/  ( A  mod  8
)  =  N ) )
37 elfzuz2 10121 . . . . . . . 8  |-  ( ( A  mod  8 )  e.  ( 0 ... M )  ->  M  e.  ( ZZ>= `  0 )
)
38 fzm1 10192 . . . . . . . 8  |-  ( M  e.  ( ZZ>= `  0
)  ->  ( ( A  mod  8 )  e.  ( 0 ... M
)  <->  ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  \/  ( A  mod  8 )  =  M ) ) )
3937, 38syl 14 . . . . . . 7  |-  ( ( A  mod  8 )  e.  ( 0 ... M )  ->  (
( A  mod  8
)  e.  ( 0 ... M )  <->  ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  \/  ( A  mod  8 )  =  M ) ) )
4039ibi 176 . . . . . 6  |-  ( ( A  mod  8 )  e.  ( 0 ... M )  ->  (
( A  mod  8
)  e.  ( 0 ... ( M  - 
1 ) )  \/  ( A  mod  8
)  =  M ) )
41 zcn 9348 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  CC )
427, 41ax-mp 5 . . . . . . . 8  |-  M  e.  CC
4342, 18, 1mvrraddi 8260 . . . . . . 7  |-  ( N  -  1 )  =  M
4443oveq2i 5936 . . . . . 6  |-  ( 0 ... ( N  - 
1 ) )  =  ( 0 ... M
)
4540, 44eleq2s 2291 . . . . 5  |-  ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  ->  (
( A  mod  8
)  e.  ( 0 ... ( M  - 
1 ) )  \/  ( A  mod  8
)  =  M ) )
4617, 18, 2mvrraddi 8260 . . . . . . . . 9  |-  ( M  -  1 )  =  K
4746oveq2i 5936 . . . . . . . 8  |-  ( 0 ... ( M  - 
1 ) )  =  ( 0 ... K
)
4847eleq2i 2263 . . . . . . 7  |-  ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  <->  ( A  mod  8 )  e.  ( 0 ... K ) )
493simp3i 1010 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... K
)  ->  ( A  mod  8 )  e.  S
) )
5048, 49biimtrid 152 . . . . . 6  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  ->  ( A  mod  8 )  e.  S
) )
51 2nn 9169 . . . . . . . . . . 11  |-  2  e.  NN
52 8nn 9175 . . . . . . . . . . 11  |-  8  e.  NN
53 4z 9373 . . . . . . . . . . . . . 14  |-  4  e.  ZZ
54 dvdsmul2 11996 . . . . . . . . . . . . . 14  |-  ( ( 4  e.  ZZ  /\  2  e.  ZZ )  ->  2  ||  ( 4  x.  2 ) )
5553, 12, 54mp2an 426 . . . . . . . . . . . . 13  |-  2  ||  ( 4  x.  2 )
56 4t2e8 9166 . . . . . . . . . . . . 13  |-  ( 4  x.  2 )  =  8
5755, 56breqtri 4059 . . . . . . . . . . . 12  |-  2  ||  8
58 dvdsmod 12044 . . . . . . . . . . . 12  |-  ( ( ( 2  e.  NN  /\  8  e.  NN  /\  A  e.  ZZ )  /\  2  ||  8 )  ->  ( 2  ||  ( A  mod  8
)  <->  2  ||  A
) )
5957, 58mpan2 425 . . . . . . . . . . 11  |-  ( ( 2  e.  NN  /\  8  e.  NN  /\  A  e.  ZZ )  ->  (
2  ||  ( A  mod  8 )  <->  2  ||  A ) )
6051, 52, 59mp3an12 1338 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  (
2  ||  ( A  mod  8 )  <->  2  ||  A ) )
6160notbid 668 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  ( -.  2  ||  ( A  mod  8 )  <->  -.  2  ||  A ) )
6261biimpar 297 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  -.  2  ||  ( A  mod  8
) )
6311, 2breqtrri 4061 . . . . . . . . 9  |-  2  ||  M
64 id 19 . . . . . . . . 9  |-  ( ( A  mod  8 )  =  M  ->  ( A  mod  8 )  =  M )
6563, 64breqtrrid 4072 . . . . . . . 8  |-  ( ( A  mod  8 )  =  M  ->  2  ||  ( A  mod  8
) )
6662, 65nsyl 629 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  -.  ( A  mod  8 )  =  M )
6766pm2.21d 620 . . . . . 6  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  =  M  ->  ( A  mod  8 )  e.  S
) )
6850, 67jaod 718 . . . . 5  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  \/  ( A  mod  8 )  =  M )  ->  ( A  mod  8 )  e.  S ) )
6945, 68syl5 32 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  ->  ( A  mod  8 )  e.  S
) )
70 lgsdir2lem2.4 . . . . . 6  |-  N  e.  S
71 eleq1 2259 . . . . . 6  |-  ( ( A  mod  8 )  =  N  ->  (
( A  mod  8
)  e.  S  <->  N  e.  S ) )
7270, 71mpbiri 168 . . . . 5  |-  ( ( A  mod  8 )  =  N  ->  ( A  mod  8 )  e.  S )
7372a1i 9 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  =  N  ->  ( A  mod  8 )  e.  S
) )
7469, 73jaod 718 . . 3  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  \/  ( A  mod  8 )  =  N )  ->  ( A  mod  8 )  e.  S ) )
7536, 74syl5 32 . 2  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... N
)  ->  ( A  mod  8 )  e.  S
) )
7610, 32, 753pm3.2i 1177 1  |-  ( N  e.  ZZ  /\  2  ||  ( N  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... N
)  ->  ( A  mod  8 )  e.  S
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901    - cmin 8214   NNcn 9007   2c2 9058   4c4 9060   8c8 9064   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100    mod cmo 10431    || cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fl 10377  df-mod 10432  df-dvds 11970
This theorem is referenced by:  lgsdir2lem3  15355
  Copyright terms: Public domain W3C validator