ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem2 Unicode version

Theorem lgsdir2lem2 13530
Description: Lemma for lgsdir2 13534. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdir2lem2.1  |-  ( K  e.  ZZ  /\  2  ||  ( K  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... K
)  ->  ( A  mod  8 )  e.  S
) ) )
lgsdir2lem2.2  |-  M  =  ( K  +  1 )
lgsdir2lem2.3  |-  N  =  ( M  +  1 )
lgsdir2lem2.4  |-  N  e.  S
Assertion
Ref Expression
lgsdir2lem2  |-  ( N  e.  ZZ  /\  2  ||  ( N  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... N
)  ->  ( A  mod  8 )  e.  S
) ) )

Proof of Theorem lgsdir2lem2
StepHypRef Expression
1 lgsdir2lem2.3 . . 3  |-  N  =  ( M  +  1 )
2 lgsdir2lem2.2 . . . . 5  |-  M  =  ( K  +  1 )
3 lgsdir2lem2.1 . . . . . . 7  |-  ( K  e.  ZZ  /\  2  ||  ( K  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... K
)  ->  ( A  mod  8 )  e.  S
) ) )
43simp1i 996 . . . . . 6  |-  K  e.  ZZ
5 peano2z 9223 . . . . . 6  |-  ( K  e.  ZZ  ->  ( K  +  1 )  e.  ZZ )
64, 5ax-mp 5 . . . . 5  |-  ( K  +  1 )  e.  ZZ
72, 6eqeltri 2238 . . . 4  |-  M  e.  ZZ
8 peano2z 9223 . . . 4  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
97, 8ax-mp 5 . . 3  |-  ( M  +  1 )  e.  ZZ
101, 9eqeltri 2238 . 2  |-  N  e.  ZZ
113simp2i 997 . . . 4  |-  2  ||  ( K  +  1 )
12 2z 9215 . . . . 5  |-  2  e.  ZZ
13 dvdsadd 11772 . . . . 5  |-  ( ( 2  e.  ZZ  /\  ( K  +  1
)  e.  ZZ )  ->  ( 2  ||  ( K  +  1
)  <->  2  ||  (
2  +  ( K  +  1 ) ) ) )
1412, 6, 13mp2an 423 . . . 4  |-  ( 2 
||  ( K  + 
1 )  <->  2  ||  ( 2  +  ( K  +  1 ) ) )
1511, 14mpbi 144 . . 3  |-  2  ||  ( 2  +  ( K  +  1 ) )
16 zcn 9192 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  K  e.  CC )
174, 16ax-mp 5 . . . . . . . . . 10  |-  K  e.  CC
18 ax-1cn 7842 . . . . . . . . . 10  |-  1  e.  CC
1917, 18addcomi 8038 . . . . . . . . 9  |-  ( K  +  1 )  =  ( 1  +  K
)
202, 19eqtri 2186 . . . . . . . 8  |-  M  =  ( 1  +  K
)
2120oveq1i 5851 . . . . . . 7  |-  ( M  +  1 )  =  ( ( 1  +  K )  +  1 )
221, 21eqtri 2186 . . . . . 6  |-  N  =  ( ( 1  +  K )  +  1 )
23 df-2 8912 . . . . . . . 8  |-  2  =  ( 1  +  1 )
2423oveq1i 5851 . . . . . . 7  |-  ( 2  +  K )  =  ( ( 1  +  1 )  +  K
)
2518, 17, 18add32i 8058 . . . . . . 7  |-  ( ( 1  +  K )  +  1 )  =  ( ( 1  +  1 )  +  K
)
2624, 25eqtr4i 2189 . . . . . 6  |-  ( 2  +  K )  =  ( ( 1  +  K )  +  1 )
2722, 26eqtr4i 2189 . . . . 5  |-  N  =  ( 2  +  K
)
2827oveq1i 5851 . . . 4  |-  ( N  +  1 )  =  ( ( 2  +  K )  +  1 )
29 2cn 8924 . . . . 5  |-  2  e.  CC
3029, 17, 18addassi 7903 . . . 4  |-  ( ( 2  +  K )  +  1 )  =  ( 2  +  ( K  +  1 ) )
3128, 30eqtri 2186 . . 3  |-  ( N  +  1 )  =  ( 2  +  ( K  +  1 ) )
3215, 31breqtrri 4008 . 2  |-  2  ||  ( N  +  1 )
33 elfzuz2 9960 . . . . 5  |-  ( ( A  mod  8 )  e.  ( 0 ... N )  ->  N  e.  ( ZZ>= `  0 )
)
34 fzm1 10031 . . . . 5  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( ( A  mod  8 )  e.  ( 0 ... N
)  <->  ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  \/  ( A  mod  8 )  =  N ) ) )
3533, 34syl 14 . . . 4  |-  ( ( A  mod  8 )  e.  ( 0 ... N )  ->  (
( A  mod  8
)  e.  ( 0 ... N )  <->  ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  \/  ( A  mod  8 )  =  N ) ) )
3635ibi 175 . . 3  |-  ( ( A  mod  8 )  e.  ( 0 ... N )  ->  (
( A  mod  8
)  e.  ( 0 ... ( N  - 
1 ) )  \/  ( A  mod  8
)  =  N ) )
37 elfzuz2 9960 . . . . . . . 8  |-  ( ( A  mod  8 )  e.  ( 0 ... M )  ->  M  e.  ( ZZ>= `  0 )
)
38 fzm1 10031 . . . . . . . 8  |-  ( M  e.  ( ZZ>= `  0
)  ->  ( ( A  mod  8 )  e.  ( 0 ... M
)  <->  ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  \/  ( A  mod  8 )  =  M ) ) )
3937, 38syl 14 . . . . . . 7  |-  ( ( A  mod  8 )  e.  ( 0 ... M )  ->  (
( A  mod  8
)  e.  ( 0 ... M )  <->  ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  \/  ( A  mod  8 )  =  M ) ) )
4039ibi 175 . . . . . 6  |-  ( ( A  mod  8 )  e.  ( 0 ... M )  ->  (
( A  mod  8
)  e.  ( 0 ... ( M  - 
1 ) )  \/  ( A  mod  8
)  =  M ) )
41 zcn 9192 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  CC )
427, 41ax-mp 5 . . . . . . . 8  |-  M  e.  CC
4342, 18, 1mvrraddi 8111 . . . . . . 7  |-  ( N  -  1 )  =  M
4443oveq2i 5852 . . . . . 6  |-  ( 0 ... ( N  - 
1 ) )  =  ( 0 ... M
)
4540, 44eleq2s 2260 . . . . 5  |-  ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  ->  (
( A  mod  8
)  e.  ( 0 ... ( M  - 
1 ) )  \/  ( A  mod  8
)  =  M ) )
4617, 18, 2mvrraddi 8111 . . . . . . . . 9  |-  ( M  -  1 )  =  K
4746oveq2i 5852 . . . . . . . 8  |-  ( 0 ... ( M  - 
1 ) )  =  ( 0 ... K
)
4847eleq2i 2232 . . . . . . 7  |-  ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  <->  ( A  mod  8 )  e.  ( 0 ... K ) )
493simp3i 998 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... K
)  ->  ( A  mod  8 )  e.  S
) )
5048, 49syl5bi 151 . . . . . 6  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  ->  ( A  mod  8 )  e.  S
) )
51 2nn 9014 . . . . . . . . . . 11  |-  2  e.  NN
52 8nn 9020 . . . . . . . . . . 11  |-  8  e.  NN
53 4z 9217 . . . . . . . . . . . . . 14  |-  4  e.  ZZ
54 dvdsmul2 11750 . . . . . . . . . . . . . 14  |-  ( ( 4  e.  ZZ  /\  2  e.  ZZ )  ->  2  ||  ( 4  x.  2 ) )
5553, 12, 54mp2an 423 . . . . . . . . . . . . 13  |-  2  ||  ( 4  x.  2 )
56 4t2e8 9011 . . . . . . . . . . . . 13  |-  ( 4  x.  2 )  =  8
5755, 56breqtri 4006 . . . . . . . . . . . 12  |-  2  ||  8
58 dvdsmod 11796 . . . . . . . . . . . 12  |-  ( ( ( 2  e.  NN  /\  8  e.  NN  /\  A  e.  ZZ )  /\  2  ||  8 )  ->  ( 2  ||  ( A  mod  8
)  <->  2  ||  A
) )
5957, 58mpan2 422 . . . . . . . . . . 11  |-  ( ( 2  e.  NN  /\  8  e.  NN  /\  A  e.  ZZ )  ->  (
2  ||  ( A  mod  8 )  <->  2  ||  A ) )
6051, 52, 59mp3an12 1317 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  (
2  ||  ( A  mod  8 )  <->  2  ||  A ) )
6160notbid 657 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  ( -.  2  ||  ( A  mod  8 )  <->  -.  2  ||  A ) )
6261biimpar 295 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  -.  2  ||  ( A  mod  8
) )
6311, 2breqtrri 4008 . . . . . . . . 9  |-  2  ||  M
64 id 19 . . . . . . . . 9  |-  ( ( A  mod  8 )  =  M  ->  ( A  mod  8 )  =  M )
6563, 64breqtrrid 4019 . . . . . . . 8  |-  ( ( A  mod  8 )  =  M  ->  2  ||  ( A  mod  8
) )
6662, 65nsyl 618 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  -.  ( A  mod  8 )  =  M )
6766pm2.21d 609 . . . . . 6  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  =  M  ->  ( A  mod  8 )  e.  S
) )
6850, 67jaod 707 . . . . 5  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  \/  ( A  mod  8 )  =  M )  ->  ( A  mod  8 )  e.  S ) )
6945, 68syl5 32 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  ->  ( A  mod  8 )  e.  S
) )
70 lgsdir2lem2.4 . . . . . 6  |-  N  e.  S
71 eleq1 2228 . . . . . 6  |-  ( ( A  mod  8 )  =  N  ->  (
( A  mod  8
)  e.  S  <->  N  e.  S ) )
7270, 71mpbiri 167 . . . . 5  |-  ( ( A  mod  8 )  =  N  ->  ( A  mod  8 )  e.  S )
7372a1i 9 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  =  N  ->  ( A  mod  8 )  e.  S
) )
7469, 73jaod 707 . . 3  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  \/  ( A  mod  8 )  =  N )  ->  ( A  mod  8 )  e.  S ) )
7536, 74syl5 32 . 2  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... N
)  ->  ( A  mod  8 )  e.  S
) )
7610, 32, 753pm3.2i 1165 1  |-  ( N  e.  ZZ  /\  2  ||  ( N  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... N
)  ->  ( A  mod  8 )  e.  S
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3981   ` cfv 5187  (class class class)co 5841   CCcc 7747   0cc0 7749   1c1 7750    + caddc 7752    x. cmul 7754    - cmin 8065   NNcn 8853   2c2 8904   4c4 8906   8c8 8910   ZZcz 9187   ZZ>=cuz 9462   ...cfz 9940    mod cmo 10253    || cdvds 11723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-po 4273  df-iso 4274  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-5 8915  df-6 8916  df-7 8917  df-8 8918  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fl 10201  df-mod 10254  df-dvds 11724
This theorem is referenced by:  lgsdir2lem3  13531
  Copyright terms: Public domain W3C validator