| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsdir2lem2 | Unicode version | ||
| Description: Lemma for lgsdir2 15706. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgsdir2lem2.1 |
|
| lgsdir2lem2.2 |
|
| lgsdir2lem2.3 |
|
| lgsdir2lem2.4 |
|
| Ref | Expression |
|---|---|
| lgsdir2lem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lgsdir2lem2.3 |
. . 3
| |
| 2 | lgsdir2lem2.2 |
. . . . 5
| |
| 3 | lgsdir2lem2.1 |
. . . . . . 7
| |
| 4 | 3 | simp1i 1030 |
. . . . . 6
|
| 5 | peano2z 9478 |
. . . . . 6
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . 5
|
| 7 | 2, 6 | eqeltri 2302 |
. . . 4
|
| 8 | peano2z 9478 |
. . . 4
| |
| 9 | 7, 8 | ax-mp 5 |
. . 3
|
| 10 | 1, 9 | eqeltri 2302 |
. 2
|
| 11 | 3 | simp2i 1031 |
. . . 4
|
| 12 | 2z 9470 |
. . . . 5
| |
| 13 | dvdsadd 12342 |
. . . . 5
| |
| 14 | 12, 6, 13 | mp2an 426 |
. . . 4
|
| 15 | 11, 14 | mpbi 145 |
. . 3
|
| 16 | zcn 9447 |
. . . . . . . . . . 11
| |
| 17 | 4, 16 | ax-mp 5 |
. . . . . . . . . 10
|
| 18 | ax-1cn 8088 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | addcomi 8286 |
. . . . . . . . 9
|
| 20 | 2, 19 | eqtri 2250 |
. . . . . . . 8
|
| 21 | 20 | oveq1i 6010 |
. . . . . . 7
|
| 22 | 1, 21 | eqtri 2250 |
. . . . . 6
|
| 23 | df-2 9165 |
. . . . . . . 8
| |
| 24 | 23 | oveq1i 6010 |
. . . . . . 7
|
| 25 | 18, 17, 18 | add32i 8306 |
. . . . . . 7
|
| 26 | 24, 25 | eqtr4i 2253 |
. . . . . 6
|
| 27 | 22, 26 | eqtr4i 2253 |
. . . . 5
|
| 28 | 27 | oveq1i 6010 |
. . . 4
|
| 29 | 2cn 9177 |
. . . . 5
| |
| 30 | 29, 17, 18 | addassi 8150 |
. . . 4
|
| 31 | 28, 30 | eqtri 2250 |
. . 3
|
| 32 | 15, 31 | breqtrri 4109 |
. 2
|
| 33 | elfzuz2 10221 |
. . . . 5
| |
| 34 | fzm1 10292 |
. . . . 5
| |
| 35 | 33, 34 | syl 14 |
. . . 4
|
| 36 | 35 | ibi 176 |
. . 3
|
| 37 | elfzuz2 10221 |
. . . . . . . 8
| |
| 38 | fzm1 10292 |
. . . . . . . 8
| |
| 39 | 37, 38 | syl 14 |
. . . . . . 7
|
| 40 | 39 | ibi 176 |
. . . . . 6
|
| 41 | zcn 9447 |
. . . . . . . . 9
| |
| 42 | 7, 41 | ax-mp 5 |
. . . . . . . 8
|
| 43 | 42, 18, 1 | mvrraddi 8359 |
. . . . . . 7
|
| 44 | 43 | oveq2i 6011 |
. . . . . 6
|
| 45 | 40, 44 | eleq2s 2324 |
. . . . 5
|
| 46 | 17, 18, 2 | mvrraddi 8359 |
. . . . . . . . 9
|
| 47 | 46 | oveq2i 6011 |
. . . . . . . 8
|
| 48 | 47 | eleq2i 2296 |
. . . . . . 7
|
| 49 | 3 | simp3i 1032 |
. . . . . . 7
|
| 50 | 48, 49 | biimtrid 152 |
. . . . . 6
|
| 51 | 2nn 9268 |
. . . . . . . . . . 11
| |
| 52 | 8nn 9274 |
. . . . . . . . . . 11
| |
| 53 | 4z 9472 |
. . . . . . . . . . . . . 14
| |
| 54 | dvdsmul2 12320 |
. . . . . . . . . . . . . 14
| |
| 55 | 53, 12, 54 | mp2an 426 |
. . . . . . . . . . . . 13
|
| 56 | 4t2e8 9265 |
. . . . . . . . . . . . 13
| |
| 57 | 55, 56 | breqtri 4107 |
. . . . . . . . . . . 12
|
| 58 | dvdsmod 12368 |
. . . . . . . . . . . 12
| |
| 59 | 57, 58 | mpan2 425 |
. . . . . . . . . . 11
|
| 60 | 51, 52, 59 | mp3an12 1361 |
. . . . . . . . . 10
|
| 61 | 60 | notbid 671 |
. . . . . . . . 9
|
| 62 | 61 | biimpar 297 |
. . . . . . . 8
|
| 63 | 11, 2 | breqtrri 4109 |
. . . . . . . . 9
|
| 64 | id 19 |
. . . . . . . . 9
| |
| 65 | 63, 64 | breqtrrid 4120 |
. . . . . . . 8
|
| 66 | 62, 65 | nsyl 631 |
. . . . . . 7
|
| 67 | 66 | pm2.21d 622 |
. . . . . 6
|
| 68 | 50, 67 | jaod 722 |
. . . . 5
|
| 69 | 45, 68 | syl5 32 |
. . . 4
|
| 70 | lgsdir2lem2.4 |
. . . . . 6
| |
| 71 | eleq1 2292 |
. . . . . 6
| |
| 72 | 70, 71 | mpbiri 168 |
. . . . 5
|
| 73 | 72 | a1i 9 |
. . . 4
|
| 74 | 69, 73 | jaod 722 |
. . 3
|
| 75 | 36, 74 | syl5 32 |
. 2
|
| 76 | 10, 32, 75 | 3pm3.2i 1199 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fl 10485 df-mod 10540 df-dvds 12294 |
| This theorem is referenced by: lgsdir2lem3 15703 |
| Copyright terms: Public domain | W3C validator |