| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > spimeh | GIF version | ||
| Description: Existential introduction, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by NM, 3-Feb-2015.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| spimeh.1 | ⊢ (𝜑 → ∀𝑥𝜑) | 
| spimeh.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | 
| Ref | Expression | 
|---|---|
| spimeh | ⊢ (𝜑 → ∃𝑥𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | a9e 1710 | . 2 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 2 | spimeh.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | spimeh.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 4 | 3 | com12 30 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → 𝜓)) | 
| 5 | 2, 4 | eximdh 1625 | . 2 ⊢ (𝜑 → (∃𝑥 𝑥 = 𝑦 → ∃𝑥𝜓)) | 
| 6 | 1, 5 | mpi 15 | 1 ⊢ (𝜑 → ∃𝑥𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |