ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvexvw Unicode version

Theorem cbvexvw 1920
Description: Change bound variable. See cbvexv 1918 for a version with fewer disjoint variable conditions. (Contributed by NM, 19-Apr-2017.) Avoid ax-7 1448. (Revised by Gino Giotto, 25-Aug-2024.)
Hypothesis
Ref Expression
cbvalvw.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvexvw  |-  ( E. x ph  <->  E. y ps )
Distinct variable groups:    x, y    ps, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvexvw
StepHypRef Expression
1 cbvalvw.1 . . . . . 6  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
21biimpd 144 . . . . 5  |-  ( x  =  y  ->  ( ph  ->  ps ) )
32equcoms 1708 . . . 4  |-  ( y  =  x  ->  ( ph  ->  ps ) )
43spimev 1861 . . 3  |-  ( ph  ->  E. y ps )
54exlimiv 1598 . 2  |-  ( E. x ph  ->  E. y ps )
61biimprd 158 . . . 4  |-  ( x  =  y  ->  ( ps  ->  ph ) )
76spimev 1861 . . 3  |-  ( ps 
->  E. x ph )
87exlimiv 1598 . 2  |-  ( E. y ps  ->  E. x ph )
95, 8impbii 126 1  |-  ( E. x ph  <->  E. y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E.wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461
This theorem is referenced by:  cbvrexvw  2710  prodmodc  11588
  Copyright terms: Public domain W3C validator