ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnxpid Unicode version

Theorem rnxpid 5162
Description: The range of a square cross product. (Contributed by FL, 17-May-2010.)
Assertion
Ref Expression
rnxpid  |-  ran  ( A  X.  A )  =  A

Proof of Theorem rnxpid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnxpss 5159 . 2  |-  ran  ( A  X.  A )  C_  A
2 opelxp 4748 . . . . . 6  |-  ( <.
x ,  x >.  e.  ( A  X.  A
)  <->  ( x  e.  A  /\  x  e.  A ) )
3 anidm 396 . . . . . 6  |-  ( ( x  e.  A  /\  x  e.  A )  <->  x  e.  A )
42, 3bitri 184 . . . . 5  |-  ( <.
x ,  x >.  e.  ( A  X.  A
)  <->  x  e.  A
)
5 opeq1 3856 . . . . . . . . 9  |-  ( x  =  y  ->  <. x ,  x >.  =  <. y ,  x >. )
65eleq1d 2298 . . . . . . . 8  |-  ( x  =  y  ->  ( <. x ,  x >.  e.  ( A  X.  A
)  <->  <. y ,  x >.  e.  ( A  X.  A ) ) )
76equcoms 1754 . . . . . . 7  |-  ( y  =  x  ->  ( <. x ,  x >.  e.  ( A  X.  A
)  <->  <. y ,  x >.  e.  ( A  X.  A ) ) )
87biimpd 144 . . . . . 6  |-  ( y  =  x  ->  ( <. x ,  x >.  e.  ( A  X.  A
)  ->  <. y ,  x >.  e.  ( A  X.  A ) ) )
98spimev 1907 . . . . 5  |-  ( <.
x ,  x >.  e.  ( A  X.  A
)  ->  E. y <. y ,  x >.  e.  ( A  X.  A
) )
104, 9sylbir 135 . . . 4  |-  ( x  e.  A  ->  E. y <. y ,  x >.  e.  ( A  X.  A
) )
11 vex 2802 . . . . 5  |-  x  e. 
_V
1211elrn2 4965 . . . 4  |-  ( x  e.  ran  ( A  X.  A )  <->  E. y <. y ,  x >.  e.  ( A  X.  A
) )
1310, 12sylibr 134 . . 3  |-  ( x  e.  A  ->  x  e.  ran  ( A  X.  A ) )
1413ssriv 3228 . 2  |-  A  C_  ran  ( A  X.  A
)
151, 14eqssi 3240 1  |-  ran  ( A  X.  A )  =  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   <.cop 3669    X. cxp 4716   ran crn 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-dm 4728  df-rn 4729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator