ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnxpid Unicode version

Theorem rnxpid 5038
Description: The range of a square cross product. (Contributed by FL, 17-May-2010.)
Assertion
Ref Expression
rnxpid  |-  ran  ( A  X.  A )  =  A

Proof of Theorem rnxpid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnxpss 5035 . 2  |-  ran  ( A  X.  A )  C_  A
2 opelxp 4634 . . . . . 6  |-  ( <.
x ,  x >.  e.  ( A  X.  A
)  <->  ( x  e.  A  /\  x  e.  A ) )
3 anidm 394 . . . . . 6  |-  ( ( x  e.  A  /\  x  e.  A )  <->  x  e.  A )
42, 3bitri 183 . . . . 5  |-  ( <.
x ,  x >.  e.  ( A  X.  A
)  <->  x  e.  A
)
5 opeq1 3758 . . . . . . . . 9  |-  ( x  =  y  ->  <. x ,  x >.  =  <. y ,  x >. )
65eleq1d 2235 . . . . . . . 8  |-  ( x  =  y  ->  ( <. x ,  x >.  e.  ( A  X.  A
)  <->  <. y ,  x >.  e.  ( A  X.  A ) ) )
76equcoms 1696 . . . . . . 7  |-  ( y  =  x  ->  ( <. x ,  x >.  e.  ( A  X.  A
)  <->  <. y ,  x >.  e.  ( A  X.  A ) ) )
87biimpd 143 . . . . . 6  |-  ( y  =  x  ->  ( <. x ,  x >.  e.  ( A  X.  A
)  ->  <. y ,  x >.  e.  ( A  X.  A ) ) )
98spimev 1849 . . . . 5  |-  ( <.
x ,  x >.  e.  ( A  X.  A
)  ->  E. y <. y ,  x >.  e.  ( A  X.  A
) )
104, 9sylbir 134 . . . 4  |-  ( x  e.  A  ->  E. y <. y ,  x >.  e.  ( A  X.  A
) )
11 vex 2729 . . . . 5  |-  x  e. 
_V
1211elrn2 4846 . . . 4  |-  ( x  e.  ran  ( A  X.  A )  <->  E. y <. y ,  x >.  e.  ( A  X.  A
) )
1310, 12sylibr 133 . . 3  |-  ( x  e.  A  ->  x  e.  ran  ( A  X.  A ) )
1413ssriv 3146 . 2  |-  A  C_  ran  ( A  X.  A
)
151, 14eqssi 3158 1  |-  ran  ( A  X.  A )  =  A
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   <.cop 3579    X. cxp 4602   ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator