ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnxpid Unicode version

Theorem rnxpid 5114
Description: The range of a square cross product. (Contributed by FL, 17-May-2010.)
Assertion
Ref Expression
rnxpid  |-  ran  ( A  X.  A )  =  A

Proof of Theorem rnxpid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnxpss 5111 . 2  |-  ran  ( A  X.  A )  C_  A
2 opelxp 4703 . . . . . 6  |-  ( <.
x ,  x >.  e.  ( A  X.  A
)  <->  ( x  e.  A  /\  x  e.  A ) )
3 anidm 396 . . . . . 6  |-  ( ( x  e.  A  /\  x  e.  A )  <->  x  e.  A )
42, 3bitri 184 . . . . 5  |-  ( <.
x ,  x >.  e.  ( A  X.  A
)  <->  x  e.  A
)
5 opeq1 3818 . . . . . . . . 9  |-  ( x  =  y  ->  <. x ,  x >.  =  <. y ,  x >. )
65eleq1d 2273 . . . . . . . 8  |-  ( x  =  y  ->  ( <. x ,  x >.  e.  ( A  X.  A
)  <->  <. y ,  x >.  e.  ( A  X.  A ) ) )
76equcoms 1730 . . . . . . 7  |-  ( y  =  x  ->  ( <. x ,  x >.  e.  ( A  X.  A
)  <->  <. y ,  x >.  e.  ( A  X.  A ) ) )
87biimpd 144 . . . . . 6  |-  ( y  =  x  ->  ( <. x ,  x >.  e.  ( A  X.  A
)  ->  <. y ,  x >.  e.  ( A  X.  A ) ) )
98spimev 1883 . . . . 5  |-  ( <.
x ,  x >.  e.  ( A  X.  A
)  ->  E. y <. y ,  x >.  e.  ( A  X.  A
) )
104, 9sylbir 135 . . . 4  |-  ( x  e.  A  ->  E. y <. y ,  x >.  e.  ( A  X.  A
) )
11 vex 2774 . . . . 5  |-  x  e. 
_V
1211elrn2 4918 . . . 4  |-  ( x  e.  ran  ( A  X.  A )  <->  E. y <. y ,  x >.  e.  ( A  X.  A
) )
1310, 12sylibr 134 . . 3  |-  ( x  e.  A  ->  x  e.  ran  ( A  X.  A ) )
1413ssriv 3196 . 2  |-  A  C_  ran  ( A  X.  A
)
151, 14eqssi 3208 1  |-  ran  ( A  X.  A )  =  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1372   E.wex 1514    e. wcel 2175   <.cop 3635    X. cxp 4671   ran crn 4674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4679  df-rel 4680  df-cnv 4681  df-dm 4683  df-rn 4684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator