ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnxpid Unicode version

Theorem rnxpid 5045
Description: The range of a square cross product. (Contributed by FL, 17-May-2010.)
Assertion
Ref Expression
rnxpid  |-  ran  ( A  X.  A )  =  A

Proof of Theorem rnxpid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnxpss 5042 . 2  |-  ran  ( A  X.  A )  C_  A
2 opelxp 4641 . . . . . 6  |-  ( <.
x ,  x >.  e.  ( A  X.  A
)  <->  ( x  e.  A  /\  x  e.  A ) )
3 anidm 394 . . . . . 6  |-  ( ( x  e.  A  /\  x  e.  A )  <->  x  e.  A )
42, 3bitri 183 . . . . 5  |-  ( <.
x ,  x >.  e.  ( A  X.  A
)  <->  x  e.  A
)
5 opeq1 3765 . . . . . . . . 9  |-  ( x  =  y  ->  <. x ,  x >.  =  <. y ,  x >. )
65eleq1d 2239 . . . . . . . 8  |-  ( x  =  y  ->  ( <. x ,  x >.  e.  ( A  X.  A
)  <->  <. y ,  x >.  e.  ( A  X.  A ) ) )
76equcoms 1701 . . . . . . 7  |-  ( y  =  x  ->  ( <. x ,  x >.  e.  ( A  X.  A
)  <->  <. y ,  x >.  e.  ( A  X.  A ) ) )
87biimpd 143 . . . . . 6  |-  ( y  =  x  ->  ( <. x ,  x >.  e.  ( A  X.  A
)  ->  <. y ,  x >.  e.  ( A  X.  A ) ) )
98spimev 1854 . . . . 5  |-  ( <.
x ,  x >.  e.  ( A  X.  A
)  ->  E. y <. y ,  x >.  e.  ( A  X.  A
) )
104, 9sylbir 134 . . . 4  |-  ( x  e.  A  ->  E. y <. y ,  x >.  e.  ( A  X.  A
) )
11 vex 2733 . . . . 5  |-  x  e. 
_V
1211elrn2 4853 . . . 4  |-  ( x  e.  ran  ( A  X.  A )  <->  E. y <. y ,  x >.  e.  ( A  X.  A
) )
1310, 12sylibr 133 . . 3  |-  ( x  e.  A  ->  x  e.  ran  ( A  X.  A ) )
1413ssriv 3151 . 2  |-  A  C_  ran  ( A  X.  A
)
151, 14eqssi 3163 1  |-  ran  ( A  X.  A )  =  A
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   <.cop 3586    X. cxp 4609   ran crn 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator