ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssini Unicode version

Theorem ssini 3400
Description: An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.)
Hypotheses
Ref Expression
ssini.1  |-  A  C_  B
ssini.2  |-  A  C_  C
Assertion
Ref Expression
ssini  |-  A  C_  ( B  i^i  C )

Proof of Theorem ssini
StepHypRef Expression
1 ssini.1 . . 3  |-  A  C_  B
2 ssini.2 . . 3  |-  A  C_  C
31, 2pm3.2i 272 . 2  |-  ( A 
C_  B  /\  A  C_  C )
4 ssin 3399 . 2  |-  ( ( A  C_  B  /\  A  C_  C )  <->  A  C_  ( B  i^i  C ) )
53, 4mpbi 145 1  |-  A  C_  ( B  i^i  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    i^i cin 3169    C_ wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3176  df-ss 3183
This theorem is referenced by:  inv1  3501
  Copyright terms: Public domain W3C validator