ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssind Unicode version

Theorem ssind 3351
Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
ssind.1  |-  ( ph  ->  A  C_  B )
ssind.2  |-  ( ph  ->  A  C_  C )
Assertion
Ref Expression
ssind  |-  ( ph  ->  A  C_  ( B  i^i  C ) )

Proof of Theorem ssind
StepHypRef Expression
1 ssind.1 . 2  |-  ( ph  ->  A  C_  B )
2 ssind.2 . 2  |-  ( ph  ->  A  C_  C )
3 ssin 3349 . . 3  |-  ( ( A  C_  B  /\  A  C_  C )  <->  A  C_  ( B  i^i  C ) )
43biimpi 119 . 2  |-  ( ( A  C_  B  /\  A  C_  C )  ->  A  C_  ( B  i^i  C ) )
51, 2, 4syl2anc 409 1  |-  ( ph  ->  A  C_  ( B  i^i  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    i^i cin 3120    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134
This theorem is referenced by:  ntrin  12918  lmss  13040
  Copyright terms: Public domain W3C validator