Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssind | Unicode version |
Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
ssind.1 | |
ssind.2 |
Ref | Expression |
---|---|
ssind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssind.1 | . 2 | |
2 | ssind.2 | . 2 | |
3 | ssin 3355 | . . 3 | |
4 | 3 | biimpi 120 | . 2 |
5 | 1, 2, 4 | syl2anc 411 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 cin 3126 wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 df-ss 3140 |
This theorem is referenced by: ntrin 13193 lmss 13315 |
Copyright terms: Public domain | W3C validator |