ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inv1 Unicode version

Theorem inv1 3460
Description: The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
inv1  |-  ( A  i^i  _V )  =  A

Proof of Theorem inv1
StepHypRef Expression
1 inss1 3356 . 2  |-  ( A  i^i  _V )  C_  A
2 ssid 3176 . . 3  |-  A  C_  A
3 ssv 3178 . . 3  |-  A  C_  _V
42, 3ssini 3359 . 2  |-  A  C_  ( A  i^i  _V )
51, 4eqssi 3172 1  |-  ( A  i^i  _V )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1353   _Vcvv 2738    i^i cin 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-in 3136  df-ss 3143
This theorem is referenced by:  rint0  3884  riin0  3959  xpssres  4943  resdmdfsn  4951  imainrect  5075  xpima2m  5077  dmresv  5088
  Copyright terms: Public domain W3C validator