ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inv1 Unicode version

Theorem inv1 3505
Description: The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
inv1  |-  ( A  i^i  _V )  =  A

Proof of Theorem inv1
StepHypRef Expression
1 inss1 3401 . 2  |-  ( A  i^i  _V )  C_  A
2 ssid 3221 . . 3  |-  A  C_  A
3 ssv 3223 . . 3  |-  A  C_  _V
42, 3ssini 3404 . 2  |-  A  C_  ( A  i^i  _V )
51, 4eqssi 3217 1  |-  ( A  i^i  _V )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373   _Vcvv 2776    i^i cin 3173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180  df-ss 3187
This theorem is referenced by:  rint0  3938  riin0  4013  xpssres  5013  resdmdfsn  5021  imainrect  5147  xpima2m  5149  dmresv  5160
  Copyright terms: Public domain W3C validator