| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > stdpc4 | Unicode version | ||
| Description: The specialization axiom
of standard predicate calculus. It states that
if a statement |
| Ref | Expression |
|---|---|
| stdpc4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 |
. . 3
| |
| 2 | 1 | alimi 1469 |
. 2
|
| 3 | sb2 1781 |
. 2
| |
| 4 | 2, 3 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 |
| This theorem is referenced by: sbh 1790 sbft 1862 pm13.183 2902 spsbc 3001 |
| Copyright terms: Public domain | W3C validator |