ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm13.183 Unicode version

Theorem pm13.183 2915
Description: Compare theorem *13.183 in [WhiteheadRussell] p. 178. Only  A is required to be a set. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
pm13.183  |-  ( A  e.  V  ->  ( A  =  B  <->  A. z
( z  =  A  <-> 
z  =  B ) ) )
Distinct variable groups:    z, A    z, B
Allowed substitution hint:    V( z)

Proof of Theorem pm13.183
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2213 . 2  |-  ( y  =  A  ->  (
y  =  B  <->  A  =  B ) )
2 eqeq2 2216 . . . 4  |-  ( y  =  A  ->  (
z  =  y  <->  z  =  A ) )
32bibi1d 233 . . 3  |-  ( y  =  A  ->  (
( z  =  y  <-> 
z  =  B )  <-> 
( z  =  A  <-> 
z  =  B ) ) )
43albidv 1848 . 2  |-  ( y  =  A  ->  ( A. z ( z  =  y  <->  z  =  B )  <->  A. z ( z  =  A  <->  z  =  B ) ) )
5 eqeq2 2216 . . . 4  |-  ( y  =  B  ->  (
z  =  y  <->  z  =  B ) )
65alrimiv 1898 . . 3  |-  ( y  =  B  ->  A. z
( z  =  y  <-> 
z  =  B ) )
7 stdpc4 1799 . . . 4  |-  ( A. z ( z  =  y  <->  z  =  B )  ->  [ y  /  z ] ( z  =  y  <->  z  =  B ) )
8 sbbi 1988 . . . . 5  |-  ( [ y  /  z ] ( z  =  y  <-> 
z  =  B )  <-> 
( [ y  / 
z ] z  =  y  <->  [ y  /  z ] z  =  B ) )
9 eqsb1 2310 . . . . . . 7  |-  ( [ y  /  z ] z  =  B  <->  y  =  B )
109bibi2i 227 . . . . . 6  |-  ( ( [ y  /  z ] z  =  y  <->  [ y  /  z ] z  =  B )  <->  ( [ y  /  z ] z  =  y  <->  y  =  B ) )
11 equsb1 1809 . . . . . . 7  |-  [ y  /  z ] z  =  y
12 biimp 118 . . . . . . 7  |-  ( ( [ y  /  z ] z  =  y  <-> 
y  =  B )  ->  ( [ y  /  z ] z  =  y  ->  y  =  B ) )
1311, 12mpi 15 . . . . . 6  |-  ( ( [ y  /  z ] z  =  y  <-> 
y  =  B )  ->  y  =  B )
1410, 13sylbi 121 . . . . 5  |-  ( ( [ y  /  z ] z  =  y  <->  [ y  /  z ] z  =  B )  ->  y  =  B )
158, 14sylbi 121 . . . 4  |-  ( [ y  /  z ] ( z  =  y  <-> 
z  =  B )  ->  y  =  B )
167, 15syl 14 . . 3  |-  ( A. z ( z  =  y  <->  z  =  B )  ->  y  =  B )
176, 16impbii 126 . 2  |-  ( y  =  B  <->  A. z
( z  =  y  <-> 
z  =  B ) )
181, 4, 17vtoclbg 2836 1  |-  ( A  e.  V  ->  ( A  =  B  <->  A. z
( z  =  A  <-> 
z  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373   [wsb 1786    e. wcel 2177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775
This theorem is referenced by:  mpo2eqb  6068
  Copyright terms: Public domain W3C validator