Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm13.183 | Unicode version |
Description: Compare theorem *13.183 in [WhiteheadRussell] p. 178. Only is required to be a set. (Contributed by Andrew Salmon, 3-Jun-2011.) |
Ref | Expression |
---|---|
pm13.183 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2172 | . 2 | |
2 | eqeq2 2175 | . . . 4 | |
3 | 2 | bibi1d 232 | . . 3 |
4 | 3 | albidv 1812 | . 2 |
5 | eqeq2 2175 | . . . 4 | |
6 | 5 | alrimiv 1862 | . . 3 |
7 | stdpc4 1763 | . . . 4 | |
8 | sbbi 1947 | . . . . 5 | |
9 | eqsb1 2270 | . . . . . . 7 | |
10 | 9 | bibi2i 226 | . . . . . 6 |
11 | equsb1 1773 | . . . . . . 7 | |
12 | biimp 117 | . . . . . . 7 | |
13 | 11, 12 | mpi 15 | . . . . . 6 |
14 | 10, 13 | sylbi 120 | . . . . 5 |
15 | 8, 14 | sylbi 120 | . . . 4 |
16 | 7, 15 | syl 14 | . . 3 |
17 | 6, 16 | impbii 125 | . 2 |
18 | 1, 4, 17 | vtoclbg 2787 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1341 wceq 1343 wsb 1750 wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: mpo2eqb 5951 |
Copyright terms: Public domain | W3C validator |