ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm13.183 Unicode version

Theorem pm13.183 2864
Description: Compare theorem *13.183 in [WhiteheadRussell] p. 178. Only  A is required to be a set. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
pm13.183  |-  ( A  e.  V  ->  ( A  =  B  <->  A. z
( z  =  A  <-> 
z  =  B ) ) )
Distinct variable groups:    z, A    z, B
Allowed substitution hint:    V( z)

Proof of Theorem pm13.183
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2172 . 2  |-  ( y  =  A  ->  (
y  =  B  <->  A  =  B ) )
2 eqeq2 2175 . . . 4  |-  ( y  =  A  ->  (
z  =  y  <->  z  =  A ) )
32bibi1d 232 . . 3  |-  ( y  =  A  ->  (
( z  =  y  <-> 
z  =  B )  <-> 
( z  =  A  <-> 
z  =  B ) ) )
43albidv 1812 . 2  |-  ( y  =  A  ->  ( A. z ( z  =  y  <->  z  =  B )  <->  A. z ( z  =  A  <->  z  =  B ) ) )
5 eqeq2 2175 . . . 4  |-  ( y  =  B  ->  (
z  =  y  <->  z  =  B ) )
65alrimiv 1862 . . 3  |-  ( y  =  B  ->  A. z
( z  =  y  <-> 
z  =  B ) )
7 stdpc4 1763 . . . 4  |-  ( A. z ( z  =  y  <->  z  =  B )  ->  [ y  /  z ] ( z  =  y  <->  z  =  B ) )
8 sbbi 1947 . . . . 5  |-  ( [ y  /  z ] ( z  =  y  <-> 
z  =  B )  <-> 
( [ y  / 
z ] z  =  y  <->  [ y  /  z ] z  =  B ) )
9 eqsb1 2270 . . . . . . 7  |-  ( [ y  /  z ] z  =  B  <->  y  =  B )
109bibi2i 226 . . . . . 6  |-  ( ( [ y  /  z ] z  =  y  <->  [ y  /  z ] z  =  B )  <->  ( [ y  /  z ] z  =  y  <->  y  =  B ) )
11 equsb1 1773 . . . . . . 7  |-  [ y  /  z ] z  =  y
12 biimp 117 . . . . . . 7  |-  ( ( [ y  /  z ] z  =  y  <-> 
y  =  B )  ->  ( [ y  /  z ] z  =  y  ->  y  =  B ) )
1311, 12mpi 15 . . . . . 6  |-  ( ( [ y  /  z ] z  =  y  <-> 
y  =  B )  ->  y  =  B )
1410, 13sylbi 120 . . . . 5  |-  ( ( [ y  /  z ] z  =  y  <->  [ y  /  z ] z  =  B )  ->  y  =  B )
158, 14sylbi 120 . . . 4  |-  ( [ y  /  z ] ( z  =  y  <-> 
z  =  B )  ->  y  =  B )
167, 15syl 14 . . 3  |-  ( A. z ( z  =  y  <->  z  =  B )  ->  y  =  B )
176, 16impbii 125 . 2  |-  ( y  =  B  <->  A. z
( z  =  y  <-> 
z  =  B ) )
181, 4, 17vtoclbg 2787 1  |-  ( A  e.  V  ->  ( A  =  B  <->  A. z
( z  =  A  <-> 
z  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341    = wceq 1343   [wsb 1750    e. wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  mpo2eqb  5951
  Copyright terms: Public domain W3C validator