ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm13.183 Unicode version

Theorem pm13.183 2877
Description: Compare theorem *13.183 in [WhiteheadRussell] p. 178. Only  A is required to be a set. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
pm13.183  |-  ( A  e.  V  ->  ( A  =  B  <->  A. z
( z  =  A  <-> 
z  =  B ) ) )
Distinct variable groups:    z, A    z, B
Allowed substitution hint:    V( z)

Proof of Theorem pm13.183
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2184 . 2  |-  ( y  =  A  ->  (
y  =  B  <->  A  =  B ) )
2 eqeq2 2187 . . . 4  |-  ( y  =  A  ->  (
z  =  y  <->  z  =  A ) )
32bibi1d 233 . . 3  |-  ( y  =  A  ->  (
( z  =  y  <-> 
z  =  B )  <-> 
( z  =  A  <-> 
z  =  B ) ) )
43albidv 1824 . 2  |-  ( y  =  A  ->  ( A. z ( z  =  y  <->  z  =  B )  <->  A. z ( z  =  A  <->  z  =  B ) ) )
5 eqeq2 2187 . . . 4  |-  ( y  =  B  ->  (
z  =  y  <->  z  =  B ) )
65alrimiv 1874 . . 3  |-  ( y  =  B  ->  A. z
( z  =  y  <-> 
z  =  B ) )
7 stdpc4 1775 . . . 4  |-  ( A. z ( z  =  y  <->  z  =  B )  ->  [ y  /  z ] ( z  =  y  <->  z  =  B ) )
8 sbbi 1959 . . . . 5  |-  ( [ y  /  z ] ( z  =  y  <-> 
z  =  B )  <-> 
( [ y  / 
z ] z  =  y  <->  [ y  /  z ] z  =  B ) )
9 eqsb1 2281 . . . . . . 7  |-  ( [ y  /  z ] z  =  B  <->  y  =  B )
109bibi2i 227 . . . . . 6  |-  ( ( [ y  /  z ] z  =  y  <->  [ y  /  z ] z  =  B )  <->  ( [ y  /  z ] z  =  y  <->  y  =  B ) )
11 equsb1 1785 . . . . . . 7  |-  [ y  /  z ] z  =  y
12 biimp 118 . . . . . . 7  |-  ( ( [ y  /  z ] z  =  y  <-> 
y  =  B )  ->  ( [ y  /  z ] z  =  y  ->  y  =  B ) )
1311, 12mpi 15 . . . . . 6  |-  ( ( [ y  /  z ] z  =  y  <-> 
y  =  B )  ->  y  =  B )
1410, 13sylbi 121 . . . . 5  |-  ( ( [ y  /  z ] z  =  y  <->  [ y  /  z ] z  =  B )  ->  y  =  B )
158, 14sylbi 121 . . . 4  |-  ( [ y  /  z ] ( z  =  y  <-> 
z  =  B )  ->  y  =  B )
167, 15syl 14 . . 3  |-  ( A. z ( z  =  y  <->  z  =  B )  ->  y  =  B )
176, 16impbii 126 . 2  |-  ( y  =  B  <->  A. z
( z  =  y  <-> 
z  =  B ) )
181, 4, 17vtoclbg 2800 1  |-  ( A  e.  V  ->  ( A  =  B  <->  A. z
( z  =  A  <-> 
z  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351    = wceq 1353   [wsb 1762    e. wcel 2148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741
This theorem is referenced by:  mpo2eqb  5986
  Copyright terms: Public domain W3C validator