ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  stdpc4 GIF version

Theorem stdpc4 1763
Description: The specialization axiom of standard predicate calculus. It states that if a statement 𝜑 holds for all 𝑥, then it also holds for the specific case of 𝑦 (properly) substituted for 𝑥. Translated to traditional notation, it can be read: "𝑥𝜑(𝑥) → 𝜑(𝑦), provided that 𝑦 is free for 𝑥 in 𝜑(𝑥)". Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
stdpc4 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)

Proof of Theorem stdpc4
StepHypRef Expression
1 ax-1 6 . . 3 (𝜑 → (𝑥 = 𝑦𝜑))
21alimi 1443 . 2 (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
3 sb2 1755 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
42, 3syl 14 1 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by:  sbh  1764  sbft  1836  pm13.183  2864  spsbc  2962
  Copyright terms: Public domain W3C validator