| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > syl2an23an | Unicode version | ||
| Description: Deduction related to syl3an 1291 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| syl2an23an.1 | 
 | 
| syl2an23an.2 | 
 | 
| syl2an23an.3 | 
 | 
| syl2an23an.4 | 
 | 
| Ref | Expression | 
|---|---|
| syl2an23an | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl2an23an.3 | 
. . 3
 | |
| 2 | syl2an23an.1 | 
. . . 4
 | |
| 3 | syl2an23an.2 | 
. . . 4
 | |
| 4 | syl2an23an.4 | 
. . . . 5
 | |
| 5 | 4 | 3exp 1204 | 
. . . 4
 | 
| 6 | 2, 3, 5 | sylc 62 | 
. . 3
 | 
| 7 | 1, 6 | syl5 32 | 
. 2
 | 
| 8 | 7 | anabsi7 581 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: fsum3ser 11562 pcz 12501 fldivp1 12517 | 
| Copyright terms: Public domain | W3C validator |