| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2an23an | GIF version | ||
| Description: Deduction related to syl3an 1291 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an23an.1 | ⊢ (𝜑 → 𝜓) |
| syl2an23an.2 | ⊢ (𝜑 → 𝜒) |
| syl2an23an.3 | ⊢ ((𝜃 ∧ 𝜑) → 𝜏) |
| syl2an23an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl2an23an | ⊢ ((𝜃 ∧ 𝜑) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an23an.3 | . . 3 ⊢ ((𝜃 ∧ 𝜑) → 𝜏) | |
| 2 | syl2an23an.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 3 | syl2an23an.2 | . . . 4 ⊢ (𝜑 → 𝜒) | |
| 4 | syl2an23an.4 | . . . . 5 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 4 | 3exp 1204 | . . . 4 ⊢ (𝜓 → (𝜒 → (𝜏 → 𝜂))) |
| 6 | 2, 3, 5 | sylc 62 | . . 3 ⊢ (𝜑 → (𝜏 → 𝜂)) |
| 7 | 1, 6 | syl5 32 | . 2 ⊢ (𝜑 → ((𝜃 ∧ 𝜑) → 𝜂)) |
| 8 | 7 | anabsi7 581 | 1 ⊢ ((𝜃 ∧ 𝜑) → 𝜂) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: fsum3ser 11579 pcz 12526 fldivp1 12542 |
| Copyright terms: Public domain | W3C validator |