| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2an3an | Unicode version | ||
| Description: syl3an 1291 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an3an.1 |
|
| syl2an3an.2 |
|
| syl2an3an.3 |
|
| syl2an3an.4 |
|
| Ref | Expression |
|---|---|
| syl2an3an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an3an.1 |
. . 3
| |
| 2 | syl2an3an.2 |
. . 3
| |
| 3 | syl2an3an.3 |
. . 3
| |
| 4 | syl2an3an.4 |
. . 3
| |
| 5 | 1, 2, 3, 4 | syl3an 1291 |
. 2
|
| 6 | 5 | 3anidm12 1306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: prfidceq 6989 expcnvap0 11667 efexp 11847 cncongr1 12271 uptx 14510 logbgcd1irr 15203 gausslemma2dlem2 15303 |
| Copyright terms: Public domain | W3C validator |