Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fsum3ser | Unicode version |
Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11353 and fsump1 11361, which should make our notation clear and from which, along with closure fsumcl 11341, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.) |
Ref | Expression |
---|---|
fsum3ser.1 | |
fsum3ser.2 | |
fsum3ser.3 |
Ref | Expression |
---|---|
fsum3ser |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . . . 5 | |
2 | eleq1w 2227 | . . . . . 6 | |
3 | fveq2 5486 | . . . . . 6 | |
4 | 2, 3 | ifbieq1d 3542 | . . . . 5 |
5 | simpr 109 | . . . . 5 | |
6 | fsum3ser.1 | . . . . . . . 8 | |
7 | fsum3ser.3 | . . . . . . . 8 | |
8 | 6, 7 | eqeltrd 2243 | . . . . . . 7 |
9 | 8 | adantr 274 | . . . . . 6 |
10 | 0cnd 7892 | . . . . . 6 | |
11 | eluzelz 9475 | . . . . . . 7 | |
12 | eluzel2 9471 | . . . . . . 7 | |
13 | fsum3ser.2 | . . . . . . . . 9 | |
14 | eluzelz 9475 | . . . . . . . . 9 | |
15 | 13, 14 | syl 14 | . . . . . . . 8 |
16 | 15 | adantr 274 | . . . . . . 7 |
17 | fzdcel 9975 | . . . . . . 7 DECID | |
18 | 11, 12, 16, 17 | syl2an23an 1289 | . . . . . 6 DECID |
19 | 9, 10, 18 | ifcldadc 3549 | . . . . 5 |
20 | 1, 4, 5, 19 | fvmptd3 5579 | . . . 4 |
21 | 6 | ifeq1d 3537 | . . . 4 |
22 | 20, 21 | eqtrd 2198 | . . 3 |
23 | elfzuz 9956 | . . . 4 | |
24 | 23, 7 | sylan2 284 | . . 3 |
25 | ssidd 3163 | . . 3 | |
26 | 22, 13, 24, 18, 25 | fsumsersdc 11336 | . 2 |
27 | 23, 20 | sylan2 284 | . . . 4 |
28 | iftrue 3525 | . . . . 5 | |
29 | 28 | adantl 275 | . . . 4 |
30 | 27, 29 | eqtrd 2198 | . . 3 |
31 | eleq1w 2227 | . . . . . 6 | |
32 | fveq2 5486 | . . . . . 6 | |
33 | 31, 32 | ifbieq1d 3542 | . . . . 5 |
34 | simpr 109 | . . . . 5 | |
35 | fveq2 5486 | . . . . . . . 8 | |
36 | 35 | eleq1d 2235 | . . . . . . 7 |
37 | 8 | ralrimiva 2539 | . . . . . . . 8 |
38 | 37 | adantr 274 | . . . . . . 7 |
39 | 36, 38, 34 | rspcdva 2835 | . . . . . 6 |
40 | 0cnd 7892 | . . . . . 6 | |
41 | eluzelz 9475 | . . . . . . 7 | |
42 | eluzel2 9471 | . . . . . . 7 | |
43 | 15 | adantr 274 | . . . . . . 7 |
44 | fzdcel 9975 | . . . . . . 7 DECID | |
45 | 41, 42, 43, 44 | syl2an23an 1289 | . . . . . 6 DECID |
46 | 39, 40, 45 | ifcldcd 3555 | . . . . 5 |
47 | 1, 33, 34, 46 | fvmptd3 5579 | . . . 4 |
48 | 47, 46 | eqeltrd 2243 | . . 3 |
49 | 36 | cbvralv 2692 | . . . . 5 |
50 | 37, 49 | sylib 121 | . . . 4 |
51 | 50 | r19.21bi 2554 | . . 3 |
52 | addcl 7878 | . . . 4 | |
53 | 52 | adantl 275 | . . 3 |
54 | 13, 30, 48, 51, 53 | seq3fveq 10406 | . 2 |
55 | 26, 54 | eqtrd 2198 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 DECID wdc 824 wceq 1343 wcel 2136 wral 2444 cif 3520 cmpt 4043 cfv 5188 (class class class)co 5842 cc 7751 cc0 7753 caddc 7756 cz 9191 cuz 9466 cfz 9944 cseq 10380 csu 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-ihash 10689 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 |
This theorem is referenced by: isumclim3 11364 iserabs 11416 isumsplit 11432 trireciplem 11441 geolim 11452 geo2lim 11457 cvgratnnlemseq 11467 mertenslem2 11477 mertensabs 11478 efcvgfsum 11608 effsumlt 11633 cvgcmp2nlemabs 13921 |
Copyright terms: Public domain | W3C validator |