ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3ser Unicode version

Theorem fsum3ser 11565
Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11580 and fsump1 11588, which should make our notation clear and from which, along with closure fsumcl 11568, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)
Hypotheses
Ref Expression
fsum3ser.1  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  A )
fsum3ser.2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsum3ser.3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
Assertion
Ref Expression
fsum3ser  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  (  seq M (  +  ,  F ) `  N
) )
Distinct variable groups:    k, F    k, M    k, N    ph, k
Allowed substitution hint:    A( k)

Proof of Theorem fsum3ser
Dummy variables  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . 5  |-  ( m  e.  ( ZZ>= `  M
)  |->  if ( m  e.  ( M ... N ) ,  ( F `  m ) ,  0 ) )  =  ( m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N
) ,  ( F `
 m ) ,  0 ) )
2 eleq1w 2257 . . . . . 6  |-  ( m  =  k  ->  (
m  e.  ( M ... N )  <->  k  e.  ( M ... N ) ) )
3 fveq2 5559 . . . . . 6  |-  ( m  =  k  ->  ( F `  m )  =  ( F `  k ) )
42, 3ifbieq1d 3584 . . . . 5  |-  ( m  =  k  ->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 )  =  if ( k  e.  ( M ... N ) ,  ( F `  k ) ,  0 ) )
5 simpr 110 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
6 fsum3ser.1 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  A )
7 fsum3ser.3 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
86, 7eqeltrd 2273 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
98adantr 276 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  CC )
10 0cnd 8022 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  -.  k  e.  ( M ... N
) )  ->  0  e.  CC )
11 eluzelz 9613 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
12 eluzel2 9609 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
13 fsum3ser.2 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
14 eluzelz 9613 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
1513, 14syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
1615adantr 276 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
17 fzdcel 10118 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  k  e.  ( M ... N ) )
1811, 12, 16, 17syl2an23an 1310 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  ( M ... N ) )
199, 10, 18ifcldadc 3591 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  ( M ... N ) ,  ( F `  k
) ,  0 )  e.  CC )
201, 4, 5, 19fvmptd3 5656 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 ) ) `  k )  =  if ( k  e.  ( M ... N ) ,  ( F `  k ) ,  0 ) )
216ifeq1d 3579 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  ( M ... N ) ,  ( F `  k
) ,  0 )  =  if ( k  e.  ( M ... N ) ,  A ,  0 ) )
2220, 21eqtrd 2229 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 ) ) `  k )  =  if ( k  e.  ( M ... N ) ,  A ,  0 ) )
23 elfzuz 10099 . . . 4  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
2423, 7sylan2 286 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
25 ssidd 3205 . . 3  |-  ( ph  ->  ( M ... N
)  C_  ( M ... N ) )
2622, 13, 24, 18, 25fsumsersdc 11563 . 2  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  (  seq M (  +  , 
( m  e.  (
ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m ) ,  0 ) ) ) `  N ) )
2723, 20sylan2 286 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 ) ) `  k )  =  if ( k  e.  ( M ... N ) ,  ( F `  k ) ,  0 ) )
28 iftrue 3567 . . . . 5  |-  ( k  e.  ( M ... N )  ->  if ( k  e.  ( M ... N ) ,  ( F `  k ) ,  0 )  =  ( F `
 k ) )
2928adantl 277 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  if (
k  e.  ( M ... N ) ,  ( F `  k
) ,  0 )  =  ( F `  k ) )
3027, 29eqtrd 2229 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 ) ) `  k )  =  ( F `  k ) )
31 eleq1w 2257 . . . . . 6  |-  ( m  =  x  ->  (
m  e.  ( M ... N )  <->  x  e.  ( M ... N ) ) )
32 fveq2 5559 . . . . . 6  |-  ( m  =  x  ->  ( F `  m )  =  ( F `  x ) )
3331, 32ifbieq1d 3584 . . . . 5  |-  ( m  =  x  ->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 )  =  if ( x  e.  ( M ... N ) ,  ( F `  x ) ,  0 ) )
34 simpr 110 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
35 fveq2 5559 . . . . . . . 8  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
3635eleq1d 2265 . . . . . . 7  |-  ( k  =  x  ->  (
( F `  k
)  e.  CC  <->  ( F `  x )  e.  CC ) )
378ralrimiva 2570 . . . . . . . 8  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  CC )
3837adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M )
( F `  k
)  e.  CC )
3936, 38, 34rspcdva 2873 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  CC )
40 0cnd 8022 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  0  e.  CC )
41 eluzelz 9613 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
42 eluzel2 9609 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
4315adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
44 fzdcel 10118 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  x  e.  ( M ... N ) )
4541, 42, 43, 44syl2an23an 1310 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  -> DECID  x  e.  ( M ... N ) )
4639, 40, 45ifcldcd 3598 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  if (
x  e.  ( M ... N ) ,  ( F `  x
) ,  0 )  e.  CC )
471, 33, 34, 46fvmptd3 5656 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 ) ) `  x )  =  if ( x  e.  ( M ... N ) ,  ( F `  x ) ,  0 ) )
4847, 46eqeltrd 2273 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 ) ) `  x )  e.  CC )
4936cbvralv 2729 . . . . 5  |-  ( A. k  e.  ( ZZ>= `  M ) ( F `
 k )  e.  CC  <->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  CC )
5037, 49sylib 122 . . . 4  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  CC )
5150r19.21bi 2585 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  CC )
52 addcl 8007 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
5352adantl 277 . . 3  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
5413, 30, 48, 51, 53seq3fveq 10574 . 2  |-  ( ph  ->  (  seq M (  +  ,  ( m  e.  ( ZZ>= `  M
)  |->  if ( m  e.  ( M ... N ) ,  ( F `  m ) ,  0 ) ) ) `  N )  =  (  seq M
(  +  ,  F
) `  N )
)
5526, 54eqtrd 2229 1  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  (  seq M (  +  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475   ifcif 3562    |-> cmpt 4095   ` cfv 5259  (class class class)co 5923   CCcc 7880   0cc0 7882    + caddc 7885   ZZcz 9329   ZZ>=cuz 9604   ...cfz 10086    seqcseq 10542   sum_csu 11521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000  ax-arch 8001  ax-caucvg 8002
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-recs 6365  df-irdg 6430  df-frec 6451  df-1o 6476  df-oadd 6480  df-er 6594  df-en 6802  df-dom 6803  df-fin 6804  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-2 9052  df-3 9053  df-4 9054  df-n0 9253  df-z 9330  df-uz 9605  df-q 9697  df-rp 9732  df-fz 10087  df-fzo 10221  df-seqfrec 10543  df-exp 10634  df-ihash 10871  df-cj 11010  df-re 11011  df-im 11012  df-rsqrt 11166  df-abs 11167  df-clim 11447  df-sumdc 11522
This theorem is referenced by:  isumclim3  11591  iserabs  11643  isumsplit  11659  trireciplem  11668  geolim  11679  geo2lim  11684  cvgratnnlemseq  11694  mertenslem2  11704  mertensabs  11705  efcvgfsum  11835  effsumlt  11860  cvgcmp2nlemabs  15703
  Copyright terms: Public domain W3C validator