ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3ser Unicode version

Theorem fsum3ser 11908
Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11923 and fsump1 11931, which should make our notation clear and from which, along with closure fsumcl 11911, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)
Hypotheses
Ref Expression
fsum3ser.1  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  A )
fsum3ser.2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsum3ser.3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
Assertion
Ref Expression
fsum3ser  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  (  seq M (  +  ,  F ) `  N
) )
Distinct variable groups:    k, F    k, M    k, N    ph, k
Allowed substitution hint:    A( k)

Proof of Theorem fsum3ser
Dummy variables  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . . 5  |-  ( m  e.  ( ZZ>= `  M
)  |->  if ( m  e.  ( M ... N ) ,  ( F `  m ) ,  0 ) )  =  ( m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N
) ,  ( F `
 m ) ,  0 ) )
2 eleq1w 2290 . . . . . 6  |-  ( m  =  k  ->  (
m  e.  ( M ... N )  <->  k  e.  ( M ... N ) ) )
3 fveq2 5627 . . . . . 6  |-  ( m  =  k  ->  ( F `  m )  =  ( F `  k ) )
42, 3ifbieq1d 3625 . . . . 5  |-  ( m  =  k  ->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 )  =  if ( k  e.  ( M ... N ) ,  ( F `  k ) ,  0 ) )
5 simpr 110 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
6 fsum3ser.1 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  A )
7 fsum3ser.3 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
86, 7eqeltrd 2306 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
98adantr 276 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  CC )
10 0cnd 8139 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  -.  k  e.  ( M ... N
) )  ->  0  e.  CC )
11 eluzelz 9731 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
12 eluzel2 9727 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
13 fsum3ser.2 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
14 eluzelz 9731 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
1513, 14syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
1615adantr 276 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
17 fzdcel 10236 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  k  e.  ( M ... N ) )
1811, 12, 16, 17syl2an23an 1333 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  ( M ... N ) )
199, 10, 18ifcldadc 3632 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  ( M ... N ) ,  ( F `  k
) ,  0 )  e.  CC )
201, 4, 5, 19fvmptd3 5728 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 ) ) `  k )  =  if ( k  e.  ( M ... N ) ,  ( F `  k ) ,  0 ) )
216ifeq1d 3620 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  ( M ... N ) ,  ( F `  k
) ,  0 )  =  if ( k  e.  ( M ... N ) ,  A ,  0 ) )
2220, 21eqtrd 2262 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 ) ) `  k )  =  if ( k  e.  ( M ... N ) ,  A ,  0 ) )
23 elfzuz 10217 . . . 4  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
2423, 7sylan2 286 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
25 ssidd 3245 . . 3  |-  ( ph  ->  ( M ... N
)  C_  ( M ... N ) )
2622, 13, 24, 18, 25fsumsersdc 11906 . 2  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  (  seq M (  +  , 
( m  e.  (
ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m ) ,  0 ) ) ) `  N ) )
2723, 20sylan2 286 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 ) ) `  k )  =  if ( k  e.  ( M ... N ) ,  ( F `  k ) ,  0 ) )
28 iftrue 3607 . . . . 5  |-  ( k  e.  ( M ... N )  ->  if ( k  e.  ( M ... N ) ,  ( F `  k ) ,  0 )  =  ( F `
 k ) )
2928adantl 277 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  if (
k  e.  ( M ... N ) ,  ( F `  k
) ,  0 )  =  ( F `  k ) )
3027, 29eqtrd 2262 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 ) ) `  k )  =  ( F `  k ) )
31 eleq1w 2290 . . . . . 6  |-  ( m  =  x  ->  (
m  e.  ( M ... N )  <->  x  e.  ( M ... N ) ) )
32 fveq2 5627 . . . . . 6  |-  ( m  =  x  ->  ( F `  m )  =  ( F `  x ) )
3331, 32ifbieq1d 3625 . . . . 5  |-  ( m  =  x  ->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 )  =  if ( x  e.  ( M ... N ) ,  ( F `  x ) ,  0 ) )
34 simpr 110 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
35 fveq2 5627 . . . . . . . 8  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
3635eleq1d 2298 . . . . . . 7  |-  ( k  =  x  ->  (
( F `  k
)  e.  CC  <->  ( F `  x )  e.  CC ) )
378ralrimiva 2603 . . . . . . . 8  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  CC )
3837adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M )
( F `  k
)  e.  CC )
3936, 38, 34rspcdva 2912 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  CC )
40 0cnd 8139 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  0  e.  CC )
41 eluzelz 9731 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
42 eluzel2 9727 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
4315adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
44 fzdcel 10236 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  x  e.  ( M ... N ) )
4541, 42, 43, 44syl2an23an 1333 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  -> DECID  x  e.  ( M ... N ) )
4639, 40, 45ifcldcd 3640 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  if (
x  e.  ( M ... N ) ,  ( F `  x
) ,  0 )  e.  CC )
471, 33, 34, 46fvmptd3 5728 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 ) ) `  x )  =  if ( x  e.  ( M ... N ) ,  ( F `  x ) ,  0 ) )
4847, 46eqeltrd 2306 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 ) ) `  x )  e.  CC )
4936cbvralv 2765 . . . . 5  |-  ( A. k  e.  ( ZZ>= `  M ) ( F `
 k )  e.  CC  <->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  CC )
5037, 49sylib 122 . . . 4  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  CC )
5150r19.21bi 2618 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  CC )
52 addcl 8124 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
5352adantl 277 . . 3  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
5413, 30, 48, 51, 53seq3fveq 10701 . 2  |-  ( ph  ->  (  seq M (  +  ,  ( m  e.  ( ZZ>= `  M
)  |->  if ( m  e.  ( M ... N ) ,  ( F `  m ) ,  0 ) ) ) `  N )  =  (  seq M
(  +  ,  F
) `  N )
)
5526, 54eqtrd 2262 1  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  (  seq M (  +  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 839    = wceq 1395    e. wcel 2200   A.wral 2508   ifcif 3602    |-> cmpt 4145   ` cfv 5318  (class class class)co 6001   CCcc 7997   0cc0 7999    + caddc 8002   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204    seqcseq 10669   sum_csu 11864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865
This theorem is referenced by:  isumclim3  11934  iserabs  11986  isumsplit  12002  trireciplem  12011  geolim  12022  geo2lim  12027  cvgratnnlemseq  12037  mertenslem2  12047  mertensabs  12048  efcvgfsum  12178  effsumlt  12203  cvgcmp2nlemabs  16400
  Copyright terms: Public domain W3C validator