Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fsum3ser | Unicode version |
Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11309 and fsump1 11317, which should make our notation clear and from which, along with closure fsumcl 11297, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.) |
Ref | Expression |
---|---|
fsum3ser.1 | |
fsum3ser.2 | |
fsum3ser.3 |
Ref | Expression |
---|---|
fsum3ser |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2157 | . . . . 5 | |
2 | eleq1w 2218 | . . . . . 6 | |
3 | fveq2 5468 | . . . . . 6 | |
4 | 2, 3 | ifbieq1d 3527 | . . . . 5 |
5 | simpr 109 | . . . . 5 | |
6 | fsum3ser.1 | . . . . . . . 8 | |
7 | fsum3ser.3 | . . . . . . . 8 | |
8 | 6, 7 | eqeltrd 2234 | . . . . . . 7 |
9 | 8 | adantr 274 | . . . . . 6 |
10 | 0cnd 7871 | . . . . . 6 | |
11 | eluzelz 9448 | . . . . . . 7 | |
12 | eluzel2 9444 | . . . . . . 7 | |
13 | fsum3ser.2 | . . . . . . . . 9 | |
14 | eluzelz 9448 | . . . . . . . . 9 | |
15 | 13, 14 | syl 14 | . . . . . . . 8 |
16 | 15 | adantr 274 | . . . . . . 7 |
17 | fzdcel 9942 | . . . . . . 7 DECID | |
18 | 11, 12, 16, 17 | syl2an23an 1281 | . . . . . 6 DECID |
19 | 9, 10, 18 | ifcldadc 3534 | . . . . 5 |
20 | 1, 4, 5, 19 | fvmptd3 5561 | . . . 4 |
21 | 6 | ifeq1d 3522 | . . . 4 |
22 | 20, 21 | eqtrd 2190 | . . 3 |
23 | elfzuz 9924 | . . . 4 | |
24 | 23, 7 | sylan2 284 | . . 3 |
25 | ssidd 3149 | . . 3 | |
26 | 22, 13, 24, 18, 25 | fsumsersdc 11292 | . 2 |
27 | 23, 20 | sylan2 284 | . . . 4 |
28 | iftrue 3510 | . . . . 5 | |
29 | 28 | adantl 275 | . . . 4 |
30 | 27, 29 | eqtrd 2190 | . . 3 |
31 | eleq1w 2218 | . . . . . 6 | |
32 | fveq2 5468 | . . . . . 6 | |
33 | 31, 32 | ifbieq1d 3527 | . . . . 5 |
34 | simpr 109 | . . . . 5 | |
35 | fveq2 5468 | . . . . . . . 8 | |
36 | 35 | eleq1d 2226 | . . . . . . 7 |
37 | 8 | ralrimiva 2530 | . . . . . . . 8 |
38 | 37 | adantr 274 | . . . . . . 7 |
39 | 36, 38, 34 | rspcdva 2821 | . . . . . 6 |
40 | 0cnd 7871 | . . . . . 6 | |
41 | eluzelz 9448 | . . . . . . 7 | |
42 | eluzel2 9444 | . . . . . . 7 | |
43 | 15 | adantr 274 | . . . . . . 7 |
44 | fzdcel 9942 | . . . . . . 7 DECID | |
45 | 41, 42, 43, 44 | syl2an23an 1281 | . . . . . 6 DECID |
46 | 39, 40, 45 | ifcldcd 3540 | . . . . 5 |
47 | 1, 33, 34, 46 | fvmptd3 5561 | . . . 4 |
48 | 47, 46 | eqeltrd 2234 | . . 3 |
49 | 36 | cbvralv 2680 | . . . . 5 |
50 | 37, 49 | sylib 121 | . . . 4 |
51 | 50 | r19.21bi 2545 | . . 3 |
52 | addcl 7857 | . . . 4 | |
53 | 52 | adantl 275 | . . 3 |
54 | 13, 30, 48, 51, 53 | seq3fveq 10370 | . 2 |
55 | 26, 54 | eqtrd 2190 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 DECID wdc 820 wceq 1335 wcel 2128 wral 2435 cif 3505 cmpt 4025 cfv 5170 (class class class)co 5824 cc 7730 cc0 7732 caddc 7735 cz 9167 cuz 9439 cfz 9912 cseq 10344 csu 11250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-iinf 4547 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-mulrcl 7831 ax-addcom 7832 ax-mulcom 7833 ax-addass 7834 ax-mulass 7835 ax-distr 7836 ax-i2m1 7837 ax-0lt1 7838 ax-1rid 7839 ax-0id 7840 ax-rnegex 7841 ax-precex 7842 ax-cnre 7843 ax-pre-ltirr 7844 ax-pre-ltwlin 7845 ax-pre-lttrn 7846 ax-pre-apti 7847 ax-pre-ltadd 7848 ax-pre-mulgt0 7849 ax-pre-mulext 7850 ax-arch 7851 ax-caucvg 7852 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4550 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-isom 5179 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 df-recs 6252 df-irdg 6317 df-frec 6338 df-1o 6363 df-oadd 6367 df-er 6480 df-en 6686 df-dom 6687 df-fin 6688 df-pnf 7914 df-mnf 7915 df-xr 7916 df-ltxr 7917 df-le 7918 df-sub 8048 df-neg 8049 df-reap 8450 df-ap 8457 df-div 8546 df-inn 8834 df-2 8892 df-3 8893 df-4 8894 df-n0 9091 df-z 9168 df-uz 9440 df-q 9529 df-rp 9561 df-fz 9913 df-fzo 10042 df-seqfrec 10345 df-exp 10419 df-ihash 10650 df-cj 10742 df-re 10743 df-im 10744 df-rsqrt 10898 df-abs 10899 df-clim 11176 df-sumdc 11251 |
This theorem is referenced by: isumclim3 11320 iserabs 11372 isumsplit 11388 trireciplem 11397 geolim 11408 geo2lim 11413 cvgratnnlemseq 11423 mertenslem2 11433 mertensabs 11434 efcvgfsum 11564 effsumlt 11589 cvgcmp2nlemabs 13614 |
Copyright terms: Public domain | W3C validator |