| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsum3ser | Unicode version | ||
| Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11923 and fsump1 11931, which should make our notation clear and from which, along with closure fsumcl 11911, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.) |
| Ref | Expression |
|---|---|
| fsum3ser.1 |
|
| fsum3ser.2 |
|
| fsum3ser.3 |
|
| Ref | Expression |
|---|---|
| fsum3ser |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . . . 5
| |
| 2 | eleq1w 2290 |
. . . . . 6
| |
| 3 | fveq2 5627 |
. . . . . 6
| |
| 4 | 2, 3 | ifbieq1d 3625 |
. . . . 5
|
| 5 | simpr 110 |
. . . . 5
| |
| 6 | fsum3ser.1 |
. . . . . . . 8
| |
| 7 | fsum3ser.3 |
. . . . . . . 8
| |
| 8 | 6, 7 | eqeltrd 2306 |
. . . . . . 7
|
| 9 | 8 | adantr 276 |
. . . . . 6
|
| 10 | 0cnd 8139 |
. . . . . 6
| |
| 11 | eluzelz 9731 |
. . . . . . 7
| |
| 12 | eluzel2 9727 |
. . . . . . 7
| |
| 13 | fsum3ser.2 |
. . . . . . . . 9
| |
| 14 | eluzelz 9731 |
. . . . . . . . 9
| |
| 15 | 13, 14 | syl 14 |
. . . . . . . 8
|
| 16 | 15 | adantr 276 |
. . . . . . 7
|
| 17 | fzdcel 10236 |
. . . . . . 7
| |
| 18 | 11, 12, 16, 17 | syl2an23an 1333 |
. . . . . 6
|
| 19 | 9, 10, 18 | ifcldadc 3632 |
. . . . 5
|
| 20 | 1, 4, 5, 19 | fvmptd3 5728 |
. . . 4
|
| 21 | 6 | ifeq1d 3620 |
. . . 4
|
| 22 | 20, 21 | eqtrd 2262 |
. . 3
|
| 23 | elfzuz 10217 |
. . . 4
| |
| 24 | 23, 7 | sylan2 286 |
. . 3
|
| 25 | ssidd 3245 |
. . 3
| |
| 26 | 22, 13, 24, 18, 25 | fsumsersdc 11906 |
. 2
|
| 27 | 23, 20 | sylan2 286 |
. . . 4
|
| 28 | iftrue 3607 |
. . . . 5
| |
| 29 | 28 | adantl 277 |
. . . 4
|
| 30 | 27, 29 | eqtrd 2262 |
. . 3
|
| 31 | eleq1w 2290 |
. . . . . 6
| |
| 32 | fveq2 5627 |
. . . . . 6
| |
| 33 | 31, 32 | ifbieq1d 3625 |
. . . . 5
|
| 34 | simpr 110 |
. . . . 5
| |
| 35 | fveq2 5627 |
. . . . . . . 8
| |
| 36 | 35 | eleq1d 2298 |
. . . . . . 7
|
| 37 | 8 | ralrimiva 2603 |
. . . . . . . 8
|
| 38 | 37 | adantr 276 |
. . . . . . 7
|
| 39 | 36, 38, 34 | rspcdva 2912 |
. . . . . 6
|
| 40 | 0cnd 8139 |
. . . . . 6
| |
| 41 | eluzelz 9731 |
. . . . . . 7
| |
| 42 | eluzel2 9727 |
. . . . . . 7
| |
| 43 | 15 | adantr 276 |
. . . . . . 7
|
| 44 | fzdcel 10236 |
. . . . . . 7
| |
| 45 | 41, 42, 43, 44 | syl2an23an 1333 |
. . . . . 6
|
| 46 | 39, 40, 45 | ifcldcd 3640 |
. . . . 5
|
| 47 | 1, 33, 34, 46 | fvmptd3 5728 |
. . . 4
|
| 48 | 47, 46 | eqeltrd 2306 |
. . 3
|
| 49 | 36 | cbvralv 2765 |
. . . . 5
|
| 50 | 37, 49 | sylib 122 |
. . . 4
|
| 51 | 50 | r19.21bi 2618 |
. . 3
|
| 52 | addcl 8124 |
. . . 4
| |
| 53 | 52 | adantl 277 |
. . 3
|
| 54 | 13, 30, 48, 51, 53 | seq3fveq 10701 |
. 2
|
| 55 | 26, 54 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-frec 6537 df-1o 6562 df-oadd 6566 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-fz 10205 df-fzo 10339 df-seqfrec 10670 df-exp 10761 df-ihash 10998 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-clim 11790 df-sumdc 11865 |
| This theorem is referenced by: isumclim3 11934 iserabs 11986 isumsplit 12002 trireciplem 12011 geolim 12022 geo2lim 12027 cvgratnnlemseq 12037 mertenslem2 12047 mertensabs 12048 efcvgfsum 12178 effsumlt 12203 cvgcmp2nlemabs 16400 |
| Copyright terms: Public domain | W3C validator |