ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3ser Unicode version

Theorem fsum3ser 11166
Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11181 and fsump1 11189, which should make our notation clear and from which, along with closure fsumcl 11169, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)
Hypotheses
Ref Expression
fsum3ser.1  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  A )
fsum3ser.2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsum3ser.3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
Assertion
Ref Expression
fsum3ser  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  (  seq M (  +  ,  F ) `  N
) )
Distinct variable groups:    k, F    k, M    k, N    ph, k
Allowed substitution hint:    A( k)

Proof of Theorem fsum3ser
Dummy variables  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2139 . . . . 5  |-  ( m  e.  ( ZZ>= `  M
)  |->  if ( m  e.  ( M ... N ) ,  ( F `  m ) ,  0 ) )  =  ( m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N
) ,  ( F `
 m ) ,  0 ) )
2 eleq1w 2200 . . . . . 6  |-  ( m  =  k  ->  (
m  e.  ( M ... N )  <->  k  e.  ( M ... N ) ) )
3 fveq2 5421 . . . . . 6  |-  ( m  =  k  ->  ( F `  m )  =  ( F `  k ) )
42, 3ifbieq1d 3494 . . . . 5  |-  ( m  =  k  ->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 )  =  if ( k  e.  ( M ... N ) ,  ( F `  k ) ,  0 ) )
5 simpr 109 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
6 fsum3ser.1 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  A )
7 fsum3ser.3 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
86, 7eqeltrd 2216 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
98adantr 274 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  CC )
10 0cnd 7759 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  -.  k  e.  ( M ... N
) )  ->  0  e.  CC )
11 eluzelz 9335 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
12 eluzel2 9331 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
13 fsum3ser.2 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
14 eluzelz 9335 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
1513, 14syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
1615adantr 274 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
17 fzdcel 9820 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  k  e.  ( M ... N ) )
1811, 12, 16, 17syl2an23an 1277 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  ( M ... N ) )
199, 10, 18ifcldadc 3501 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  ( M ... N ) ,  ( F `  k
) ,  0 )  e.  CC )
201, 4, 5, 19fvmptd3 5514 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 ) ) `  k )  =  if ( k  e.  ( M ... N ) ,  ( F `  k ) ,  0 ) )
216ifeq1d 3489 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  ( M ... N ) ,  ( F `  k
) ,  0 )  =  if ( k  e.  ( M ... N ) ,  A ,  0 ) )
2220, 21eqtrd 2172 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 ) ) `  k )  =  if ( k  e.  ( M ... N ) ,  A ,  0 ) )
23 elfzuz 9802 . . . 4  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
2423, 7sylan2 284 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
25 ssidd 3118 . . 3  |-  ( ph  ->  ( M ... N
)  C_  ( M ... N ) )
2622, 13, 24, 18, 25fsumsersdc 11164 . 2  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  (  seq M (  +  , 
( m  e.  (
ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m ) ,  0 ) ) ) `  N ) )
2723, 20sylan2 284 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 ) ) `  k )  =  if ( k  e.  ( M ... N ) ,  ( F `  k ) ,  0 ) )
28 iftrue 3479 . . . . 5  |-  ( k  e.  ( M ... N )  ->  if ( k  e.  ( M ... N ) ,  ( F `  k ) ,  0 )  =  ( F `
 k ) )
2928adantl 275 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  if (
k  e.  ( M ... N ) ,  ( F `  k
) ,  0 )  =  ( F `  k ) )
3027, 29eqtrd 2172 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 ) ) `  k )  =  ( F `  k ) )
31 eleq1w 2200 . . . . . 6  |-  ( m  =  x  ->  (
m  e.  ( M ... N )  <->  x  e.  ( M ... N ) ) )
32 fveq2 5421 . . . . . 6  |-  ( m  =  x  ->  ( F `  m )  =  ( F `  x ) )
3331, 32ifbieq1d 3494 . . . . 5  |-  ( m  =  x  ->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 )  =  if ( x  e.  ( M ... N ) ,  ( F `  x ) ,  0 ) )
34 simpr 109 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
35 fveq2 5421 . . . . . . . 8  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
3635eleq1d 2208 . . . . . . 7  |-  ( k  =  x  ->  (
( F `  k
)  e.  CC  <->  ( F `  x )  e.  CC ) )
378ralrimiva 2505 . . . . . . . 8  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  CC )
3837adantr 274 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M )
( F `  k
)  e.  CC )
3936, 38, 34rspcdva 2794 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  CC )
40 0cnd 7759 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  0  e.  CC )
41 eluzelz 9335 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
42 eluzel2 9331 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
4315adantr 274 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
44 fzdcel 9820 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  x  e.  ( M ... N ) )
4541, 42, 43, 44syl2an23an 1277 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  -> DECID  x  e.  ( M ... N ) )
4639, 40, 45ifcldcd 3507 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  if (
x  e.  ( M ... N ) ,  ( F `  x
) ,  0 )  e.  CC )
471, 33, 34, 46fvmptd3 5514 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 ) ) `  x )  =  if ( x  e.  ( M ... N ) ,  ( F `  x ) ,  0 ) )
4847, 46eqeltrd 2216 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
m  e.  ( ZZ>= `  M )  |->  if ( m  e.  ( M ... N ) ,  ( F `  m
) ,  0 ) ) `  x )  e.  CC )
4936cbvralv 2654 . . . . 5  |-  ( A. k  e.  ( ZZ>= `  M ) ( F `
 k )  e.  CC  <->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  CC )
5037, 49sylib 121 . . . 4  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  CC )
5150r19.21bi 2520 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  CC )
52 addcl 7745 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
5352adantl 275 . . 3  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
5413, 30, 48, 51, 53seq3fveq 10244 . 2  |-  ( ph  ->  (  seq M (  +  ,  ( m  e.  ( ZZ>= `  M
)  |->  if ( m  e.  ( M ... N ) ,  ( F `  m ) ,  0 ) ) ) `  N )  =  (  seq M
(  +  ,  F
) `  N )
)
5526, 54eqtrd 2172 1  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  (  seq M (  +  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103  DECID wdc 819    = wceq 1331    e. wcel 1480   A.wral 2416   ifcif 3474    |-> cmpt 3989   ` cfv 5123  (class class class)co 5774   CCcc 7618   0cc0 7620    + caddc 7623   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790    seqcseq 10218   sum_csu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  isumclim3  11192  iserabs  11244  isumsplit  11260  trireciplem  11269  geolim  11280  geo2lim  11285  cvgratnnlemseq  11295  mertenslem2  11305  mertensabs  11306  efcvgfsum  11373  effsumlt  11398  cvgcmp2nlemabs  13227
  Copyright terms: Public domain W3C validator