| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pcz | Unicode version | ||
| Description: The prime count function can be used as an indicator that a given rational number is an integer. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| Ref | Expression |
|---|---|
| pcz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcge0 12507 |
. . . 4
| |
| 2 | 1 | ancoms 268 |
. . 3
|
| 3 | 2 | ralrimiva 2570 |
. 2
|
| 4 | elq 9713 |
. . 3
| |
| 5 | nnz 9362 |
. . . . . . . . . . 11
| |
| 6 | dvds0 11988 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | syl 14 |
. . . . . . . . . 10
|
| 8 | 7 | ad2antlr 489 |
. . . . . . . . 9
|
| 9 | simpr 110 |
. . . . . . . . 9
| |
| 10 | 8, 9 | breqtrrd 4062 |
. . . . . . . 8
|
| 11 | 10 | a1d 22 |
. . . . . . 7
|
| 12 | simpr 110 |
. . . . . . . . . . . . 13
| |
| 13 | simplll 533 |
. . . . . . . . . . . . 13
| |
| 14 | simplr 528 |
. . . . . . . . . . . . 13
| |
| 15 | simpllr 534 |
. . . . . . . . . . . . 13
| |
| 16 | pcdiv 12496 |
. . . . . . . . . . . . 13
| |
| 17 | 12, 13, 14, 15, 16 | syl121anc 1254 |
. . . . . . . . . . . 12
|
| 18 | 17 | breq2d 4046 |
. . . . . . . . . . 11
|
| 19 | pczcl 12492 |
. . . . . . . . . . . . . 14
| |
| 20 | 12, 13, 14, 19 | syl12anc 1247 |
. . . . . . . . . . . . 13
|
| 21 | 20 | nn0red 9320 |
. . . . . . . . . . . 12
|
| 22 | 12, 15 | pccld 12494 |
. . . . . . . . . . . . 13
|
| 23 | 22 | nn0red 9320 |
. . . . . . . . . . . 12
|
| 24 | 21, 23 | subge0d 8579 |
. . . . . . . . . . 11
|
| 25 | 18, 24 | bitrd 188 |
. . . . . . . . . 10
|
| 26 | 25 | ralbidva 2493 |
. . . . . . . . 9
|
| 27 | id 19 |
. . . . . . . . . . 11
| |
| 28 | pc2dvds 12524 |
. . . . . . . . . . 11
| |
| 29 | 5, 27, 28 | syl2anr 290 |
. . . . . . . . . 10
|
| 30 | 29 | adantr 276 |
. . . . . . . . 9
|
| 31 | 26, 30 | bitr4d 191 |
. . . . . . . 8
|
| 32 | 31 | biimpd 144 |
. . . . . . 7
|
| 33 | 0zd 9355 |
. . . . . . . . 9
| |
| 34 | zdceq 9418 |
. . . . . . . . 9
| |
| 35 | 33, 34 | syldan 282 |
. . . . . . . 8
|
| 36 | dcne 2378 |
. . . . . . . 8
| |
| 37 | 35, 36 | sylib 122 |
. . . . . . 7
|
| 38 | 11, 32, 37 | mpjaodan 799 |
. . . . . 6
|
| 39 | nnne0 9035 |
. . . . . . 7
| |
| 40 | simpl 109 |
. . . . . . 7
| |
| 41 | dvdsval2 11972 |
. . . . . . 7
| |
| 42 | 5, 39, 40, 41 | syl2an23an 1310 |
. . . . . 6
|
| 43 | 38, 42 | sylibd 149 |
. . . . 5
|
| 44 | oveq2 5933 |
. . . . . . . 8
| |
| 45 | 44 | breq2d 4046 |
. . . . . . 7
|
| 46 | 45 | ralbidv 2497 |
. . . . . 6
|
| 47 | eleq1 2259 |
. . . . . 6
| |
| 48 | 46, 47 | imbi12d 234 |
. . . . 5
|
| 49 | 43, 48 | syl5ibrcom 157 |
. . . 4
|
| 50 | 49 | rexlimivv 2620 |
. . 3
|
| 51 | 4, 50 | sylbi 121 |
. 2
|
| 52 | 3, 51 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-1o 6483 df-2o 6484 df-er 6601 df-en 6809 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-xnn0 9330 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-fl 10377 df-mod 10432 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-dvds 11970 df-gcd 12146 df-prm 12301 df-pc 12479 |
| This theorem is referenced by: pcmptdvds 12539 qexpz 12546 |
| Copyright terms: Public domain | W3C validator |