ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcz Unicode version

Theorem pcz 12770
Description: The prime count function can be used as an indicator that a given rational number is an integer. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pcz  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  A. p  e.  Prime  0  <_  (
p  pCnt  A )
) )
Distinct variable group:    A, p

Proof of Theorem pcz
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcge0 12751 . . . 4  |-  ( ( p  e.  Prime  /\  A  e.  ZZ )  ->  0  <_  ( p  pCnt  A
) )
21ancoms 268 . . 3  |-  ( ( A  e.  ZZ  /\  p  e.  Prime )  -> 
0  <_  ( p  pCnt  A ) )
32ralrimiva 2581 . 2  |-  ( A  e.  ZZ  ->  A. p  e.  Prime  0  <_  (
p  pCnt  A )
)
4 elq 9778 . . 3  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
5 nnz 9426 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  ZZ )
6 dvds0 12232 . . . . . . . . . . 11  |-  ( y  e.  ZZ  ->  y  ||  0 )
75, 6syl 14 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  ||  0 )
87ad2antlr 489 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =  0 )  ->  y  ||  0 )
9 simpr 110 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =  0 )  ->  x  = 
0 )
108, 9breqtrrd 4087 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =  0 )  ->  y  ||  x )
1110a1d 22 . . . . . . 7  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =  0 )  ->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  ->  y  ||  x ) )
12 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  p  e.  Prime )
13 simplll 533 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  x  e.  ZZ )
14 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  x  =/=  0 )
15 simpllr 534 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  y  e.  NN )
16 pcdiv 12740 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN )  ->  ( p  pCnt  (
x  /  y ) )  =  ( ( p  pCnt  x )  -  ( p  pCnt  y ) ) )
1712, 13, 14, 15, 16syl121anc 1255 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  ( x  /  y ) )  =  ( ( p 
pCnt  x )  -  (
p  pCnt  y )
) )
1817breq2d 4071 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
0  <_  ( p  pCnt  ( x  /  y
) )  <->  0  <_  ( ( p  pCnt  x
)  -  ( p 
pCnt  y ) ) ) )
19 pczcl 12736 . . . . . . . . . . . . . 14  |-  ( ( p  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( p  pCnt  x )  e.  NN0 )
2012, 13, 14, 19syl12anc 1248 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  x )  e.  NN0 )
2120nn0red 9384 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  x )  e.  RR )
2212, 15pccld 12738 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  y )  e.  NN0 )
2322nn0red 9384 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  y )  e.  RR )
2421, 23subge0d 8643 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
0  <_  ( (
p  pCnt  x )  -  ( p  pCnt  y ) )  <->  ( p  pCnt  y )  <_  (
p  pCnt  x )
) )
2518, 24bitrd 188 . . . . . . . . . 10  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
0  <_  ( p  pCnt  ( x  /  y
) )  <->  ( p  pCnt  y )  <_  (
p  pCnt  x )
) )
2625ralbidva 2504 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  <->  A. p  e.  Prime  ( p  pCnt  y )  <_  ( p  pCnt  x
) ) )
27 id 19 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  x  e.  ZZ )
28 pc2dvds 12768 . . . . . . . . . . 11  |-  ( ( y  e.  ZZ  /\  x  e.  ZZ )  ->  ( y  ||  x  <->  A. p  e.  Prime  (
p  pCnt  y )  <_  ( p  pCnt  x
) ) )
295, 27, 28syl2anr 290 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( y  ||  x  <->  A. p  e.  Prime  (
p  pCnt  y )  <_  ( p  pCnt  x
) ) )
3029adantr 276 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( y  ||  x  <->  A. p  e.  Prime  ( p  pCnt  y )  <_  ( p  pCnt  x
) ) )
3126, 30bitr4d 191 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  <->  y  ||  x
) )
3231biimpd 144 . . . . . . 7  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  ->  y  ||  x ) )
33 0zd 9419 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  0  e.  ZZ )
34 zdceq 9483 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  0  e.  ZZ )  -> DECID  x  =  0 )
3533, 34syldan 282 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  -> DECID  x  =  0 )
36 dcne 2389 . . . . . . . 8  |-  (DECID  x  =  0  <->  ( x  =  0  \/  x  =/=  0 ) )
3735, 36sylib 122 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( x  =  0  \/  x  =/=  0
) )
3811, 32, 37mpjaodan 800 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A. p  e. 
Prime  0  <_  ( p 
pCnt  ( x  / 
y ) )  -> 
y  ||  x )
)
39 nnne0 9099 . . . . . . 7  |-  ( y  e.  NN  ->  y  =/=  0 )
40 simpl 109 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  x  e.  ZZ )
41 dvdsval2 12216 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  y  =/=  0  /\  x  e.  ZZ )  ->  (
y  ||  x  <->  ( x  /  y )  e.  ZZ ) )
425, 39, 40, 41syl2an23an 1312 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( y  ||  x  <->  ( x  /  y )  e.  ZZ ) )
4338, 42sylibd 149 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A. p  e. 
Prime  0  <_  ( p 
pCnt  ( x  / 
y ) )  -> 
( x  /  y
)  e.  ZZ ) )
44 oveq2 5975 . . . . . . . 8  |-  ( A  =  ( x  / 
y )  ->  (
p  pCnt  A )  =  ( p  pCnt  ( x  /  y ) ) )
4544breq2d 4071 . . . . . . 7  |-  ( A  =  ( x  / 
y )  ->  (
0  <_  ( p  pCnt  A )  <->  0  <_  ( p  pCnt  ( x  /  y ) ) ) )
4645ralbidv 2508 . . . . . 6  |-  ( A  =  ( x  / 
y )  ->  ( A. p  e.  Prime  0  <_  ( p  pCnt  A )  <->  A. p  e.  Prime  0  <_  ( p  pCnt  ( x  /  y ) ) ) )
47 eleq1 2270 . . . . . 6  |-  ( A  =  ( x  / 
y )  ->  ( A  e.  ZZ  <->  ( x  /  y )  e.  ZZ ) )
4846, 47imbi12d 234 . . . . 5  |-  ( A  =  ( x  / 
y )  ->  (
( A. p  e. 
Prime  0  <_  ( p 
pCnt  A )  ->  A  e.  ZZ )  <->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  ->  ( x  /  y )  e.  ZZ ) ) )
4943, 48syl5ibrcom 157 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  ( A. p  e.  Prime  0  <_  (
p  pCnt  A )  ->  A  e.  ZZ ) ) )
5049rexlimivv 2631 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( A. p  e.  Prime  0  <_  ( p  pCnt  A )  ->  A  e.  ZZ ) )
514, 50sylbi 121 . 2  |-  ( A  e.  QQ  ->  ( A. p  e.  Prime  0  <_  ( p  pCnt  A )  ->  A  e.  ZZ ) )
523, 51impbid2 143 1  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  A. p  e.  Prime  0  <_  (
p  pCnt  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2178    =/= wne 2378   A.wral 2486   E.wrex 2487   class class class wbr 4059  (class class class)co 5967   0cc0 7960    <_ cle 8143    - cmin 8278    / cdiv 8780   NNcn 9071   NN0cn0 9330   ZZcz 9407   QQcq 9775    || cdvds 12213   Primecprime 12544    pCnt cpc 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-2o 6526  df-er 6643  df-en 6851  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-xnn0 9394  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390  df-prm 12545  df-pc 12723
This theorem is referenced by:  pcmptdvds  12783  qexpz  12790
  Copyright terms: Public domain W3C validator