ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcz Unicode version

Theorem pcz 12274
Description: The prime count function can be used as an indicator that a given rational number is an integer. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pcz  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  A. p  e.  Prime  0  <_  (
p  pCnt  A )
) )
Distinct variable group:    A, p

Proof of Theorem pcz
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcge0 12255 . . . 4  |-  ( ( p  e.  Prime  /\  A  e.  ZZ )  ->  0  <_  ( p  pCnt  A
) )
21ancoms 266 . . 3  |-  ( ( A  e.  ZZ  /\  p  e.  Prime )  -> 
0  <_  ( p  pCnt  A ) )
32ralrimiva 2543 . 2  |-  ( A  e.  ZZ  ->  A. p  e.  Prime  0  <_  (
p  pCnt  A )
)
4 elq 9570 . . 3  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
5 nnz 9220 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  ZZ )
6 dvds0 11757 . . . . . . . . . . 11  |-  ( y  e.  ZZ  ->  y  ||  0 )
75, 6syl 14 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  ||  0 )
87ad2antlr 486 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =  0 )  ->  y  ||  0 )
9 simpr 109 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =  0 )  ->  x  = 
0 )
108, 9breqtrrd 4015 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =  0 )  ->  y  ||  x )
1110a1d 22 . . . . . . 7  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =  0 )  ->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  ->  y  ||  x ) )
12 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  p  e.  Prime )
13 simplll 528 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  x  e.  ZZ )
14 simplr 525 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  x  =/=  0 )
15 simpllr 529 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  y  e.  NN )
16 pcdiv 12245 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN )  ->  ( p  pCnt  (
x  /  y ) )  =  ( ( p  pCnt  x )  -  ( p  pCnt  y ) ) )
1712, 13, 14, 15, 16syl121anc 1238 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  ( x  /  y ) )  =  ( ( p 
pCnt  x )  -  (
p  pCnt  y )
) )
1817breq2d 3999 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
0  <_  ( p  pCnt  ( x  /  y
) )  <->  0  <_  ( ( p  pCnt  x
)  -  ( p 
pCnt  y ) ) ) )
19 pczcl 12241 . . . . . . . . . . . . . 14  |-  ( ( p  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( p  pCnt  x )  e.  NN0 )
2012, 13, 14, 19syl12anc 1231 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  x )  e.  NN0 )
2120nn0red 9178 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  x )  e.  RR )
2212, 15pccld 12243 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  y )  e.  NN0 )
2322nn0red 9178 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  y )  e.  RR )
2421, 23subge0d 8443 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
0  <_  ( (
p  pCnt  x )  -  ( p  pCnt  y ) )  <->  ( p  pCnt  y )  <_  (
p  pCnt  x )
) )
2518, 24bitrd 187 . . . . . . . . . 10  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
0  <_  ( p  pCnt  ( x  /  y
) )  <->  ( p  pCnt  y )  <_  (
p  pCnt  x )
) )
2625ralbidva 2466 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  <->  A. p  e.  Prime  ( p  pCnt  y )  <_  ( p  pCnt  x
) ) )
27 id 19 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  x  e.  ZZ )
28 pc2dvds 12272 . . . . . . . . . . 11  |-  ( ( y  e.  ZZ  /\  x  e.  ZZ )  ->  ( y  ||  x  <->  A. p  e.  Prime  (
p  pCnt  y )  <_  ( p  pCnt  x
) ) )
295, 27, 28syl2anr 288 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( y  ||  x  <->  A. p  e.  Prime  (
p  pCnt  y )  <_  ( p  pCnt  x
) ) )
3029adantr 274 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( y  ||  x  <->  A. p  e.  Prime  ( p  pCnt  y )  <_  ( p  pCnt  x
) ) )
3126, 30bitr4d 190 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  <->  y  ||  x
) )
3231biimpd 143 . . . . . . 7  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  ->  y  ||  x ) )
33 0zd 9213 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  0  e.  ZZ )
34 zdceq 9276 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  0  e.  ZZ )  -> DECID  x  =  0 )
3533, 34syldan 280 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  -> DECID  x  =  0 )
36 dcne 2351 . . . . . . . 8  |-  (DECID  x  =  0  <->  ( x  =  0  \/  x  =/=  0 ) )
3735, 36sylib 121 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( x  =  0  \/  x  =/=  0
) )
3811, 32, 37mpjaodan 793 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A. p  e. 
Prime  0  <_  ( p 
pCnt  ( x  / 
y ) )  -> 
y  ||  x )
)
39 nnne0 8895 . . . . . . 7  |-  ( y  e.  NN  ->  y  =/=  0 )
40 simpl 108 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  x  e.  ZZ )
41 dvdsval2 11741 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  y  =/=  0  /\  x  e.  ZZ )  ->  (
y  ||  x  <->  ( x  /  y )  e.  ZZ ) )
425, 39, 40, 41syl2an23an 1294 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( y  ||  x  <->  ( x  /  y )  e.  ZZ ) )
4338, 42sylibd 148 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A. p  e. 
Prime  0  <_  ( p 
pCnt  ( x  / 
y ) )  -> 
( x  /  y
)  e.  ZZ ) )
44 oveq2 5859 . . . . . . . 8  |-  ( A  =  ( x  / 
y )  ->  (
p  pCnt  A )  =  ( p  pCnt  ( x  /  y ) ) )
4544breq2d 3999 . . . . . . 7  |-  ( A  =  ( x  / 
y )  ->  (
0  <_  ( p  pCnt  A )  <->  0  <_  ( p  pCnt  ( x  /  y ) ) ) )
4645ralbidv 2470 . . . . . 6  |-  ( A  =  ( x  / 
y )  ->  ( A. p  e.  Prime  0  <_  ( p  pCnt  A )  <->  A. p  e.  Prime  0  <_  ( p  pCnt  ( x  /  y ) ) ) )
47 eleq1 2233 . . . . . 6  |-  ( A  =  ( x  / 
y )  ->  ( A  e.  ZZ  <->  ( x  /  y )  e.  ZZ ) )
4846, 47imbi12d 233 . . . . 5  |-  ( A  =  ( x  / 
y )  ->  (
( A. p  e. 
Prime  0  <_  ( p 
pCnt  A )  ->  A  e.  ZZ )  <->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  ->  ( x  /  y )  e.  ZZ ) ) )
4943, 48syl5ibrcom 156 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  ( A. p  e.  Prime  0  <_  (
p  pCnt  A )  ->  A  e.  ZZ ) ) )
5049rexlimivv 2593 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( A. p  e.  Prime  0  <_  ( p  pCnt  A )  ->  A  e.  ZZ ) )
514, 50sylbi 120 . 2  |-  ( A  e.  QQ  ->  ( A. p  e.  Prime  0  <_  ( p  pCnt  A )  ->  A  e.  ZZ ) )
523, 51impbid2 142 1  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  A. p  e.  Prime  0  <_  (
p  pCnt  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141    =/= wne 2340   A.wral 2448   E.wrex 2449   class class class wbr 3987  (class class class)co 5851   0cc0 7763    <_ cle 7944    - cmin 8079    / cdiv 8578   NNcn 8867   NN0cn0 9124   ZZcz 9201   QQcq 9567    || cdvds 11738   Primecprime 12050    pCnt cpc 12227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881  ax-arch 7882  ax-caucvg 7883
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-1o 6393  df-2o 6394  df-er 6510  df-en 6716  df-sup 6958  df-inf 6959  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-inn 8868  df-2 8926  df-3 8927  df-4 8928  df-n0 9125  df-xnn0 9188  df-z 9202  df-uz 9477  df-q 9568  df-rp 9600  df-fz 9955  df-fzo 10088  df-fl 10215  df-mod 10268  df-seqfrec 10391  df-exp 10465  df-cj 10795  df-re 10796  df-im 10797  df-rsqrt 10951  df-abs 10952  df-dvds 11739  df-gcd 11887  df-prm 12051  df-pc 12228
This theorem is referenced by:  pcmptdvds  12286  qexpz  12293
  Copyright terms: Public domain W3C validator