ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fldivp1 Unicode version

Theorem fldivp1 12671
Description: The difference between the floors of adjacent fractions is either 1 or 0. (Contributed by Mario Carneiro, 8-Mar-2014.)
Assertion
Ref Expression
fldivp1  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  ( ( M  + 
1 )  /  N
) )  -  ( |_ `  ( M  /  N ) ) )  =  if ( N 
||  ( M  + 
1 ) ,  1 ,  0 ) )

Proof of Theorem fldivp1
StepHypRef Expression
1 nnz 9391 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ZZ )
2 nnne0 9064 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  =/=  0 )
3 peano2z 9408 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
43adantr 276 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  1 )  e.  ZZ )
5 dvdsval2 12101 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  N  =/=  0  /\  ( M  +  1 )  e.  ZZ )  -> 
( N  ||  ( M  +  1 )  <-> 
( ( M  + 
1 )  /  N
)  e.  ZZ ) )
61, 2, 4, 5syl2an23an 1312 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  ||  ( M  +  1 )  <-> 
( ( M  + 
1 )  /  N
)  e.  ZZ ) )
76biimpa 296 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( ( M  +  1 )  /  N )  e.  ZZ )
8 flid 10427 . . . . . . 7  |-  ( ( ( M  +  1 )  /  N )  e.  ZZ  ->  ( |_ `  ( ( M  +  1 )  /  N ) )  =  ( ( M  + 
1 )  /  N
) )
97, 8syl 14 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( |_ `  ( ( M  + 
1 )  /  N
) )  =  ( ( M  +  1 )  /  N ) )
10 nnm1nn0 9336 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
1110nn0red 9349 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  RR )
1210nn0ge0d 9351 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <_  ( N  -  1 ) )
13 nnre 9043 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  RR )
14 nngt0 9061 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <  N )
15 divge0 8946 . . . . . . . . 9  |-  ( ( ( ( N  - 
1 )  e.  RR  /\  0  <_  ( N  -  1 ) )  /\  ( N  e.  RR  /\  0  < 
N ) )  -> 
0  <_  ( ( N  -  1 )  /  N ) )
1611, 12, 13, 14, 15syl22anc 1251 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <_  ( ( N  - 
1 )  /  N
) )
1716ad2antlr 489 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  0  <_  ( ( N  -  1 )  /  N ) )
1813ltm1d 9005 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  -  1 )  <  N )
19 nncn 9044 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  CC )
2019mulridd 8089 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  x.  1 )  =  N )
2118, 20breqtrrd 4072 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  <  ( N  x.  1 ) )
22 1red 8087 . . . . . . . . . 10  |-  ( N  e.  NN  ->  1  e.  RR )
23 ltdivmul 8949 . . . . . . . . . 10  |-  ( ( ( N  -  1 )  e.  RR  /\  1  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( ( N  -  1 )  /  N )  <  1  <->  ( N  -  1 )  <  ( N  x.  1 ) ) )
2411, 22, 13, 14, 23syl112anc 1254 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( N  - 
1 )  /  N
)  <  1  <->  ( N  -  1 )  < 
( N  x.  1 ) ) )
2521, 24mpbird 167 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  -  1 )  /  N )  <  1 )
2625ad2antlr 489 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( ( N  -  1 )  /  N )  <  1 )
2710nn0zd 9493 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  ZZ )
28 znq 9745 . . . . . . . . . 10  |-  ( ( ( N  -  1 )  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  - 
1 )  /  N
)  e.  QQ )
2927, 28mpancom 422 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( N  -  1 )  /  N )  e.  QQ )
3029ad2antlr 489 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( ( N  -  1 )  /  N )  e.  QQ )
31 flqbi2 10434 . . . . . . . 8  |-  ( ( ( ( M  + 
1 )  /  N
)  e.  ZZ  /\  ( ( N  - 
1 )  /  N
)  e.  QQ )  ->  ( ( |_
`  ( ( ( M  +  1 )  /  N )  +  ( ( N  - 
1 )  /  N
) ) )  =  ( ( M  + 
1 )  /  N
)  <->  ( 0  <_ 
( ( N  - 
1 )  /  N
)  /\  ( ( N  -  1 )  /  N )  <  1 ) ) )
327, 30, 31syl2anc 411 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( ( |_ `  ( ( ( M  +  1 )  /  N )  +  ( ( N  - 
1 )  /  N
) ) )  =  ( ( M  + 
1 )  /  N
)  <->  ( 0  <_ 
( ( N  - 
1 )  /  N
)  /\  ( ( N  -  1 )  /  N )  <  1 ) ) )
3317, 26, 32mpbir2and 947 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( |_ `  ( ( ( M  +  1 )  /  N )  +  ( ( N  -  1 )  /  N ) ) )  =  ( ( M  +  1 )  /  N ) )
349, 33eqtr4d 2241 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( |_ `  ( ( M  + 
1 )  /  N
) )  =  ( |_ `  ( ( ( M  +  1 )  /  N )  +  ( ( N  -  1 )  /  N ) ) ) )
35 zcn 9377 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  CC )
3635adantr 276 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  CC )
3719adantl 277 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  CC )
38 nnap0 9065 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N #  0 )
3938adantl 277 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N #  0 )
4036, 37, 37, 39divdirapd 8902 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  +  N )  /  N
)  =  ( ( M  /  N )  +  ( N  /  N ) ) )
41 ax-1cn 8018 . . . . . . . . . . . 12  |-  1  e.  CC
4241a1i 9 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  1  e.  CC )
4336, 42, 37ppncand 8423 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  + 
1 )  +  ( N  -  1 ) )  =  ( M  +  N ) )
4443oveq1d 5959 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  +  ( N  -  1 ) )  /  N
)  =  ( ( M  +  N )  /  N ) )
454zcnd 9496 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  1 )  e.  CC )
46 subcl 8271 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  1 )  e.  CC )
4719, 41, 46sylancl 413 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  CC )
4847adantl 277 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  -  1 )  e.  CC )
4945, 48, 37, 39divdirapd 8902 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  +  ( N  -  1 ) )  /  N
)  =  ( ( ( M  +  1 )  /  N )  +  ( ( N  -  1 )  /  N ) ) )
5044, 49eqtr3d 2240 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  +  N )  /  N
)  =  ( ( ( M  +  1 )  /  N )  +  ( ( N  -  1 )  /  N ) ) )
5137, 39dividapd 8859 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  /  N
)  =  1 )
5251oveq2d 5960 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  /  N )  +  ( N  /  N ) )  =  ( ( M  /  N )  +  1 ) )
5340, 50, 523eqtr3d 2246 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  /  N )  +  ( ( N  -  1 )  /  N ) )  =  ( ( M  /  N )  +  1 ) )
5453fveq2d 5580 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  (
( ( M  + 
1 )  /  N
)  +  ( ( N  -  1 )  /  N ) ) )  =  ( |_
`  ( ( M  /  N )  +  1 ) ) )
5554adantr 276 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( |_ `  ( ( ( M  +  1 )  /  N )  +  ( ( N  -  1 )  /  N ) ) )  =  ( |_ `  ( ( M  /  N )  +  1 ) ) )
56 znq 9745 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  QQ )
57 1z 9398 . . . . . . 7  |-  1  e.  ZZ
58 flqaddz 10440 . . . . . . 7  |-  ( ( ( M  /  N
)  e.  QQ  /\  1  e.  ZZ )  ->  ( |_ `  (
( M  /  N
)  +  1 ) )  =  ( ( |_ `  ( M  /  N ) )  +  1 ) )
5956, 57, 58sylancl 413 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  (
( M  /  N
)  +  1 ) )  =  ( ( |_ `  ( M  /  N ) )  +  1 ) )
6059adantr 276 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( |_ `  ( ( M  /  N )  +  1 ) )  =  ( ( |_ `  ( M  /  N ) )  +  1 ) )
6134, 55, 603eqtrrd 2243 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( ( |_ `  ( M  /  N ) )  +  1 )  =  ( |_ `  ( ( M  +  1 )  /  N ) ) )
62 znq 9745 . . . . . . . . 9  |-  ( ( ( M  +  1 )  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  + 
1 )  /  N
)  e.  QQ )
633, 62sylan 283 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  + 
1 )  /  N
)  e.  QQ )
6463flqcld 10420 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  (
( M  +  1 )  /  N ) )  e.  ZZ )
6564zcnd 9496 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  (
( M  +  1 )  /  N ) )  e.  CC )
6656flqcld 10420 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  ( M  /  N ) )  e.  ZZ )
6766zcnd 9496 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  ( M  /  N ) )  e.  CC )
6865, 67, 42subaddd 8401 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( |_
`  ( ( M  +  1 )  /  N ) )  -  ( |_ `  ( M  /  N ) ) )  =  1  <->  (
( |_ `  ( M  /  N ) )  +  1 )  =  ( |_ `  (
( M  +  1 )  /  N ) ) ) )
6968adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( (
( |_ `  (
( M  +  1 )  /  N ) )  -  ( |_
`  ( M  /  N ) ) )  =  1  <->  ( ( |_ `  ( M  /  N ) )  +  1 )  =  ( |_ `  ( ( M  +  1 )  /  N ) ) ) )
7061, 69mpbird 167 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( ( |_ `  ( ( M  +  1 )  /  N ) )  -  ( |_ `  ( M  /  N ) ) )  =  1 )
71 iftrue 3576 . . . 4  |-  ( N 
||  ( M  + 
1 )  ->  if ( N  ||  ( M  +  1 ) ,  1 ,  0 )  =  1 )
7271adantl 277 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  if ( N  ||  ( M  + 
1 ) ,  1 ,  0 )  =  1 )
7370, 72eqtr4d 2241 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( ( |_ `  ( ( M  +  1 )  /  N ) )  -  ( |_ `  ( M  /  N ) ) )  =  if ( N  ||  ( M  +  1 ) ,  1 ,  0 ) )
74 zmodcl 10489 . . . . . . . . . . 11  |-  ( ( ( M  +  1 )  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  + 
1 )  mod  N
)  e.  NN0 )
753, 74sylan 283 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  + 
1 )  mod  N
)  e.  NN0 )
7675nn0red 9349 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  + 
1 )  mod  N
)  e.  RR )
77 1re 8071 . . . . . . . . 9  |-  1  e.  RR
78 resubcl 8336 . . . . . . . . 9  |-  ( ( ( ( M  + 
1 )  mod  N
)  e.  RR  /\  1  e.  RR )  ->  ( ( ( M  +  1 )  mod 
N )  -  1 )  e.  RR )
7976, 77, 78sylancl 413 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  mod 
N )  -  1 )  e.  RR )
8079adantr 276 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  (
( ( M  + 
1 )  mod  N
)  -  1 )  e.  RR )
8175nn0zd 9493 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  + 
1 )  mod  N
)  e.  ZZ )
82 elnndc 9733 . . . . . . . . . . . 12  |-  ( ( ( M  +  1 )  mod  N )  e.  ZZ  -> DECID  ( ( M  + 
1 )  mod  N
)  e.  NN )
8381, 82syl 14 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  -> DECID  ( ( M  +  1 )  mod  N )  e.  NN )
84 elnn0 9297 . . . . . . . . . . . . . 14  |-  ( ( ( M  +  1 )  mod  N )  e.  NN0  <->  ( ( ( M  +  1 )  mod  N )  e.  NN  \/  ( ( M  +  1 )  mod  N )  =  0 ) )
8575, 84sylib 122 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  mod 
N )  e.  NN  \/  ( ( M  + 
1 )  mod  N
)  =  0 ) )
8685ord 726 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( -.  ( ( M  +  1 )  mod  N )  e.  NN  ->  ( ( M  +  1 )  mod  N )  =  0 ) )
87 id 19 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  NN )
88 dvdsval3 12102 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( M  +  1
)  e.  ZZ )  ->  ( N  ||  ( M  +  1
)  <->  ( ( M  +  1 )  mod 
N )  =  0 ) )
8987, 3, 88syl2anr 290 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  ||  ( M  +  1 )  <-> 
( ( M  + 
1 )  mod  N
)  =  0 ) )
9086, 89sylibrd 169 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( -.  ( ( M  +  1 )  mod  N )  e.  NN  ->  N  ||  ( M  +  1 ) ) )
91 con1dc 858 . . . . . . . . . . 11  |-  (DECID  ( ( M  +  1 )  mod  N )  e.  NN  ->  ( ( -.  ( ( M  + 
1 )  mod  N
)  e.  NN  ->  N 
||  ( M  + 
1 ) )  -> 
( -.  N  ||  ( M  +  1
)  ->  ( ( M  +  1 )  mod  N )  e.  NN ) ) )
9283, 90, 91sylc 62 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( -.  N  ||  ( M  +  1
)  ->  ( ( M  +  1 )  mod  N )  e.  NN ) )
9392imp 124 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  (
( M  +  1 )  mod  N )  e.  NN )
94 nnm1nn0 9336 . . . . . . . . 9  |-  ( ( ( M  +  1 )  mod  N )  e.  NN  ->  (
( ( M  + 
1 )  mod  N
)  -  1 )  e.  NN0 )
9593, 94syl 14 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  (
( ( M  + 
1 )  mod  N
)  -  1 )  e.  NN0 )
9695nn0ge0d 9351 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  0  <_  ( ( ( M  +  1 )  mod 
N )  -  1 ) )
9713, 14jca 306 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  e.  RR  /\  0  <  N ) )
9897ad2antlr 489 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  ( N  e.  RR  /\  0  <  N ) )
99 divge0 8946 . . . . . . 7  |-  ( ( ( ( ( ( M  +  1 )  mod  N )  - 
1 )  e.  RR  /\  0  <_  ( (
( M  +  1 )  mod  N )  -  1 ) )  /\  ( N  e.  RR  /\  0  < 
N ) )  -> 
0  <_  ( (
( ( M  + 
1 )  mod  N
)  -  1 )  /  N ) )
10080, 96, 98, 99syl21anc 1249 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  0  <_  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
) )
10113adantl 277 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  RR )
10276ltm1d 9005 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  mod 
N )  -  1 )  <  ( ( M  +  1 )  mod  N ) )
103 zq 9747 . . . . . . . . . . . . 13  |-  ( ( M  +  1 )  e.  ZZ  ->  ( M  +  1 )  e.  QQ )
1043, 103syl 14 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  QQ )
105104adantr 276 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  1 )  e.  QQ )
106 nnq 9754 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  QQ )
107106adantl 277 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  QQ )
10814adantl 277 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  0  <  N )
109 modqlt 10478 . . . . . . . . . . 11  |-  ( ( ( M  +  1 )  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( M  +  1 )  mod  N )  <  N )
110105, 107, 108, 109syl3anc 1250 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  + 
1 )  mod  N
)  <  N )
11179, 76, 101, 102, 110lttrd 8198 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  mod 
N )  -  1 )  <  N )
11237mulridd 8089 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  1 )  =  N )
113111, 112breqtrrd 4072 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  mod 
N )  -  1 )  <  ( N  x.  1 ) )
114 1red 8087 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  1  e.  RR )
115 ltdivmul 8949 . . . . . . . . 9  |-  ( ( ( ( ( M  +  1 )  mod 
N )  -  1 )  e.  RR  /\  1  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( ( ( ( M  +  1 )  mod  N )  -  1 )  /  N )  <  1  <->  ( ( ( M  + 
1 )  mod  N
)  -  1 )  <  ( N  x.  1 ) ) )
11679, 114, 101, 108, 115syl112anc 1254 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( ( ( M  +  1 )  mod  N )  -  1 )  /  N )  <  1  <->  ( ( ( M  + 
1 )  mod  N
)  -  1 )  <  ( N  x.  1 ) ) )
117113, 116mpbird 167 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
)  <  1 )
118117adantr 276 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  (
( ( ( M  +  1 )  mod 
N )  -  1 )  /  N )  <  1 )
119 peano2zm 9410 . . . . . . . . . 10  |-  ( ( ( M  +  1 )  mod  N )  e.  ZZ  ->  (
( ( M  + 
1 )  mod  N
)  -  1 )  e.  ZZ )
12081, 119syl 14 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  mod 
N )  -  1 )  e.  ZZ )
121 znq 9745 . . . . . . . . 9  |-  ( ( ( ( ( M  +  1 )  mod 
N )  -  1 )  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
)  e.  QQ )
122120, 121sylancom 420 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
)  e.  QQ )
123 flqbi2 10434 . . . . . . . 8  |-  ( ( ( |_ `  (
( M  +  1 )  /  N ) )  e.  ZZ  /\  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
)  e.  QQ )  ->  ( ( |_
`  ( ( |_
`  ( ( M  +  1 )  /  N ) )  +  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
) ) )  =  ( |_ `  (
( M  +  1 )  /  N ) )  <->  ( 0  <_ 
( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
)  /\  ( (
( ( M  + 
1 )  mod  N
)  -  1 )  /  N )  <  1 ) ) )
12464, 122, 123syl2anc 411 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  ( ( |_ `  ( ( M  + 
1 )  /  N
) )  +  ( ( ( ( M  +  1 )  mod 
N )  -  1 )  /  N ) ) )  =  ( |_ `  ( ( M  +  1 )  /  N ) )  <-> 
( 0  <_  (
( ( ( M  +  1 )  mod 
N )  -  1 )  /  N )  /\  ( ( ( ( M  +  1 )  mod  N )  -  1 )  /  N )  <  1
) ) )
125124adantr 276 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  (
( |_ `  (
( |_ `  (
( M  +  1 )  /  N ) )  +  ( ( ( ( M  + 
1 )  mod  N
)  -  1 )  /  N ) ) )  =  ( |_
`  ( ( M  +  1 )  /  N ) )  <->  ( 0  <_  ( ( ( ( M  +  1 )  mod  N )  -  1 )  /  N )  /\  (
( ( ( M  +  1 )  mod 
N )  -  1 )  /  N )  <  1 ) ) )
126100, 118, 125mpbir2and 947 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  ( |_ `  ( ( |_
`  ( ( M  +  1 )  /  N ) )  +  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
) ) )  =  ( |_ `  (
( M  +  1 )  /  N ) ) )
127 modqval 10469 . . . . . . . . . . . . 13  |-  ( ( ( M  +  1 )  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( M  +  1 )  mod  N )  =  ( ( M  +  1 )  -  ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) ) ) )
128105, 107, 108, 127syl3anc 1250 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  + 
1 )  mod  N
)  =  ( ( M  +  1 )  -  ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) ) ) )
129128oveq1d 5959 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  mod 
N )  -  1 )  =  ( ( ( M  +  1 )  -  ( N  x.  ( |_ `  ( ( M  + 
1 )  /  N
) ) ) )  -  1 ) )
13037, 65mulcld 8093 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) )  e.  CC )
13145, 42, 130sub32d 8415 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  - 
1 )  -  ( N  x.  ( |_ `  ( ( M  + 
1 )  /  N
) ) ) )  =  ( ( ( M  +  1 )  -  ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) ) )  -  1 ) )
132 pncan 8278 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
13336, 41, 132sylancl 413 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  + 
1 )  -  1 )  =  M )
134133oveq1d 5959 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  - 
1 )  -  ( N  x.  ( |_ `  ( ( M  + 
1 )  /  N
) ) ) )  =  ( M  -  ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) ) ) )
135129, 131, 1343eqtr2d 2244 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  mod 
N )  -  1 )  =  ( M  -  ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) ) ) )
136135oveq1d 5959 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
)  =  ( ( M  -  ( N  x.  ( |_ `  ( ( M  + 
1 )  /  N
) ) ) )  /  N ) )
13736, 130, 37, 39divsubdirapd 8903 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  -  ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) ) )  /  N )  =  ( ( M  /  N )  -  ( ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) )  /  N ) ) )
13865, 37, 39divcanap3d 8868 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) )  /  N )  =  ( |_ `  ( ( M  + 
1 )  /  N
) ) )
139138oveq2d 5960 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  /  N )  -  (
( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) )  /  N ) )  =  ( ( M  /  N )  -  ( |_ `  ( ( M  +  1 )  /  N ) ) ) )
140136, 137, 1393eqtrrd 2243 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  /  N )  -  ( |_ `  ( ( M  +  1 )  /  N ) ) )  =  ( ( ( ( M  +  1 )  mod  N )  -  1 )  /  N ) )
141 zre 9376 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  RR )
142 nndivre 9072 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  N  e.  NN )  ->  ( M  /  N
)  e.  RR )
143141, 142sylan 283 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  RR )
144143recnd 8101 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  CC )
145 nndivre 9072 . . . . . . . . . . 11  |-  ( ( ( ( ( M  +  1 )  mod 
N )  -  1 )  e.  RR  /\  N  e.  NN )  ->  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
)  e.  RR )
14679, 145sylancom 420 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
)  e.  RR )
147146recnd 8101 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
)  e.  CC )
148144, 65, 147subaddd 8401 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  /  N )  -  ( |_ `  ( ( M  +  1 )  /  N ) ) )  =  ( ( ( ( M  + 
1 )  mod  N
)  -  1 )  /  N )  <->  ( ( |_ `  ( ( M  +  1 )  /  N ) )  +  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
) )  =  ( M  /  N ) ) )
149140, 148mpbid 147 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  ( ( M  + 
1 )  /  N
) )  +  ( ( ( ( M  +  1 )  mod 
N )  -  1 )  /  N ) )  =  ( M  /  N ) )
150149adantr 276 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  (
( |_ `  (
( M  +  1 )  /  N ) )  +  ( ( ( ( M  + 
1 )  mod  N
)  -  1 )  /  N ) )  =  ( M  /  N ) )
151150fveq2d 5580 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  ( |_ `  ( ( |_
`  ( ( M  +  1 )  /  N ) )  +  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
) ) )  =  ( |_ `  ( M  /  N ) ) )
152126, 151eqtr3d 2240 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  ( |_ `  ( ( M  +  1 )  /  N ) )  =  ( |_ `  ( M  /  N ) ) )
15365, 67subeq0ad 8393 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( |_
`  ( ( M  +  1 )  /  N ) )  -  ( |_ `  ( M  /  N ) ) )  =  0  <->  ( |_ `  ( ( M  +  1 )  /  N ) )  =  ( |_ `  ( M  /  N ) ) ) )
154153adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  (
( ( |_ `  ( ( M  + 
1 )  /  N
) )  -  ( |_ `  ( M  /  N ) ) )  =  0  <->  ( |_ `  ( ( M  + 
1 )  /  N
) )  =  ( |_ `  ( M  /  N ) ) ) )
155152, 154mpbird 167 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  (
( |_ `  (
( M  +  1 )  /  N ) )  -  ( |_
`  ( M  /  N ) ) )  =  0 )
156 iffalse 3579 . . . 4  |-  ( -.  N  ||  ( M  +  1 )  ->  if ( N  ||  ( M  +  1 ) ,  1 ,  0 )  =  0 )
157156adantl 277 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  if ( N  ||  ( M  +  1 ) ,  1 ,  0 )  =  0 )
158155, 157eqtr4d 2241 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  (
( |_ `  (
( M  +  1 )  /  N ) )  -  ( |_
`  ( M  /  N ) ) )  =  if ( N 
||  ( M  + 
1 ) ,  1 ,  0 ) )
159 simpr 110 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  NN )
160 dvdsdc 12109 . . . 4  |-  ( ( N  e.  NN  /\  ( M  +  1
)  e.  ZZ )  -> DECID 
N  ||  ( M  +  1 ) )
161159, 4, 160syl2anc 411 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  -> DECID  N 
||  ( M  + 
1 ) )
162 exmiddc 838 . . 3  |-  (DECID  N  ||  ( M  +  1
)  ->  ( N  ||  ( M  +  1 )  \/  -.  N  ||  ( M  +  1 ) ) )
163161, 162syl 14 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  ||  ( M  +  1 )  \/  -.  N  ||  ( M  +  1
) ) )
16473, 158, 163mpjaodan 800 1  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  ( ( M  + 
1 )  /  N
) )  -  ( |_ `  ( M  /  N ) ) )  =  if ( N 
||  ( M  + 
1 ) ,  1 ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2176    =/= wne 2376   ifcif 3571   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    x. cmul 7930    < clt 8107    <_ cle 8108    - cmin 8243   # cap 8654    / cdiv 8745   NNcn 9036   NN0cn0 9295   ZZcz 9372   QQcq 9740   |_cfl 10411    mod cmo 10467    || cdvds 12098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fl 10413  df-mod 10468  df-dvds 12099
This theorem is referenced by:  pcfac  12673
  Copyright terms: Public domain W3C validator