Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan9ssr | Unicode version |
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) |
Ref | Expression |
---|---|
sylan9ssr.1 | |
sylan9ssr.2 |
Ref | Expression |
---|---|
sylan9ssr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9ssr.1 | . . 3 | |
2 | sylan9ssr.2 | . . 3 | |
3 | 1, 2 | sylan9ss 3141 | . 2 |
4 | 3 | ancoms 266 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-in 3108 df-ss 3115 |
This theorem is referenced by: intssuni2m 3831 |
Copyright terms: Public domain | W3C validator |