ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9ss Unicode version

Theorem sylan9ss 3206
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Hypotheses
Ref Expression
sylan9ss.1  |-  ( ph  ->  A  C_  B )
sylan9ss.2  |-  ( ps 
->  B  C_  C )
Assertion
Ref Expression
sylan9ss  |-  ( (
ph  /\  ps )  ->  A  C_  C )

Proof of Theorem sylan9ss
StepHypRef Expression
1 sylan9ss.1 . 2  |-  ( ph  ->  A  C_  B )
2 sylan9ss.2 . 2  |-  ( ps 
->  B  C_  C )
3 sstr 3201 . 2  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )
41, 2, 3syl2an 289 1  |-  ( (
ph  /\  ps )  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by:  sylan9ssr  3207  unss12  3345  ss2in  3401  relrelss  5209  funssxp  5445
  Copyright terms: Public domain W3C validator