Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan9ss | Unicode version |
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
sylan9ss.1 | |
sylan9ss.2 |
Ref | Expression |
---|---|
sylan9ss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9ss.1 | . 2 | |
2 | sylan9ss.2 | . 2 | |
3 | sstr 3150 | . 2 | |
4 | 1, 2, 3 | syl2an 287 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: sylan9ssr 3156 unss12 3294 ss2in 3350 relrelss 5130 funssxp 5357 |
Copyright terms: Public domain | W3C validator |