ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intssuni2m Unicode version

Theorem intssuni2m 3908
Description: Subclass relationship for intersection and union. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
intssuni2m  |-  ( ( A  C_  B  /\  E. x  x  e.  A
)  ->  |^| A  C_  U. B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem intssuni2m
StepHypRef Expression
1 intssunim 3906 . 2  |-  ( E. x  x  e.  A  ->  |^| A  C_  U. A
)
2 uniss 3870 . 2  |-  ( A 
C_  B  ->  U. A  C_ 
U. B )
31, 2sylan9ssr 3206 1  |-  ( ( A  C_  B  /\  E. x  x  e.  A
)  ->  |^| A  C_  U. B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1514    e. wcel 2175    C_ wss 3165   U.cuni 3849   |^|cint 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-in 3171  df-ss 3178  df-uni 3850  df-int 3885
This theorem is referenced by:  rintm  4019  onintonm  4564  fival  7071  fiuni  7079  lssintclm  14088
  Copyright terms: Public domain W3C validator