Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  intssuni2m Unicode version

Theorem intssuni2m 3801
 Description: Subclass relationship for intersection and union. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
intssuni2m
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem intssuni2m
StepHypRef Expression
1 intssunim 3799 . 2
2 uniss 3763 . 2
31, 2sylan9ssr 3114 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103  wex 1469   wcel 1481   wss 3074  cuni 3742  cint 3777 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-in 3080  df-ss 3087  df-uni 3743  df-int 3778 This theorem is referenced by:  rintm  3911  onintonm  4439  fival  6864  fiuni  6872
 Copyright terms: Public domain W3C validator