ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intssuni2m Unicode version

Theorem intssuni2m 3946
Description: Subclass relationship for intersection and union. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
intssuni2m  |-  ( ( A  C_  B  /\  E. x  x  e.  A
)  ->  |^| A  C_  U. B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem intssuni2m
StepHypRef Expression
1 intssunim 3944 . 2  |-  ( E. x  x  e.  A  ->  |^| A  C_  U. A
)
2 uniss 3908 . 2  |-  ( A 
C_  B  ->  U. A  C_ 
U. B )
31, 2sylan9ssr 3238 1  |-  ( ( A  C_  B  /\  E. x  x  e.  A
)  ->  |^| A  C_  U. B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1538    e. wcel 2200    C_ wss 3197   U.cuni 3887   |^|cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-uni 3888  df-int 3923
This theorem is referenced by:  rintm  4057  onintonm  4608  fival  7133  fiuni  7141  lssintclm  14342
  Copyright terms: Public domain W3C validator