| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqss | Unicode version | ||
| Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1511 |
. 2
| |
| 2 | dfcleq 2201 |
. 2
| |
| 3 | ssalel 3189 |
. . 3
| |
| 4 | ssalel 3189 |
. . 3
| |
| 5 | 3, 4 | anbi12i 460 |
. 2
|
| 6 | 1, 2, 5 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: eqssi 3217 eqssd 3218 sseq1 3224 sseq2 3225 eqimss 3255 ssrabeq 3288 uneqin 3432 ss0b 3508 vss 3516 sssnm 3808 unidif 3896 ssunieq 3897 iuneq1 3954 iuneq2 3957 iunxdif2 3990 ssext 4283 pweqb 4285 eqopab2b 4344 pwunim 4351 soeq2 4381 iunpw 4545 ordunisuc2r 4580 tfi 4648 eqrel 4782 eqrelrel 4794 coeq1 4853 coeq2 4854 cnveq 4870 dmeq 4897 relssres 5016 xp11m 5140 xpcanm 5141 xpcan2m 5142 ssrnres 5144 fnres 5412 eqfnfv3 5702 fneqeql2 5712 fconst4m 5827 f1imaeq 5867 eqoprab2b 6026 fo1stresm 6270 fo2ndresm 6271 nnacan 6621 nnmcan 6628 ixpeq2 6822 sbthlemi3 7087 wrdeq 11053 isprm2 12554 lssle0 14249 bastop1 14670 epttop 14677 opnneiid 14751 cnntr 14812 metequiv 15082 bj-sseq 15928 bdeq0 16002 bdvsn 16009 bdop 16010 bdeqsuc 16016 bj-om 16072 |
| Copyright terms: Public domain | W3C validator |