| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqss | Unicode version | ||
| Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1510 |
. 2
| |
| 2 | dfcleq 2199 |
. 2
| |
| 3 | ssalel 3181 |
. . 3
| |
| 4 | ssalel 3181 |
. . 3
| |
| 5 | 3, 4 | anbi12i 460 |
. 2
|
| 6 | 1, 2, 5 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: eqssi 3209 eqssd 3210 sseq1 3216 sseq2 3217 eqimss 3247 ssrabeq 3280 uneqin 3424 ss0b 3500 vss 3508 sssnm 3795 unidif 3882 ssunieq 3883 iuneq1 3940 iuneq2 3943 iunxdif2 3976 ssext 4266 pweqb 4268 eqopab2b 4327 pwunim 4334 soeq2 4364 iunpw 4528 ordunisuc2r 4563 tfi 4631 eqrel 4765 eqrelrel 4777 coeq1 4836 coeq2 4837 cnveq 4853 dmeq 4879 relssres 4998 xp11m 5122 xpcanm 5123 xpcan2m 5124 ssrnres 5126 fnres 5394 eqfnfv3 5681 fneqeql2 5691 fconst4m 5806 f1imaeq 5846 eqoprab2b 6005 fo1stresm 6249 fo2ndresm 6250 nnacan 6600 nnmcan 6607 ixpeq2 6801 sbthlemi3 7063 wrdeq 11018 isprm2 12472 lssle0 14167 bastop1 14588 epttop 14595 opnneiid 14669 cnntr 14730 metequiv 15000 bj-sseq 15765 bdeq0 15840 bdvsn 15847 bdop 15848 bdeqsuc 15854 bj-om 15910 |
| Copyright terms: Public domain | W3C validator |