| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqss | Unicode version | ||
| Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1510 |
. 2
| |
| 2 | dfcleq 2199 |
. 2
| |
| 3 | ssalel 3181 |
. . 3
| |
| 4 | ssalel 3181 |
. . 3
| |
| 5 | 3, 4 | anbi12i 460 |
. 2
|
| 6 | 1, 2, 5 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: eqssi 3209 eqssd 3210 sseq1 3216 sseq2 3217 eqimss 3247 ssrabeq 3280 uneqin 3424 ss0b 3500 vss 3508 sssnm 3795 unidif 3882 ssunieq 3883 iuneq1 3940 iuneq2 3943 iunxdif2 3976 ssext 4265 pweqb 4267 eqopab2b 4326 pwunim 4333 soeq2 4363 iunpw 4527 ordunisuc2r 4562 tfi 4630 eqrel 4764 eqrelrel 4776 coeq1 4835 coeq2 4836 cnveq 4852 dmeq 4878 relssres 4997 xp11m 5121 xpcanm 5122 xpcan2m 5123 ssrnres 5125 fnres 5392 eqfnfv3 5679 fneqeql2 5689 fconst4m 5804 f1imaeq 5844 eqoprab2b 6003 fo1stresm 6247 fo2ndresm 6248 nnacan 6598 nnmcan 6605 ixpeq2 6799 sbthlemi3 7061 wrdeq 11016 isprm2 12439 lssle0 14134 bastop1 14555 epttop 14562 opnneiid 14636 cnntr 14697 metequiv 14967 bj-sseq 15728 bdeq0 15803 bdvsn 15810 bdop 15811 bdeqsuc 15817 bj-om 15873 |
| Copyright terms: Public domain | W3C validator |