ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqss Unicode version

Theorem eqss 3239
Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
eqss  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )

Proof of Theorem eqss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 albiim 1533 . 2  |-  ( A. x ( x  e.  A  <->  x  e.  B
)  <->  ( A. x
( x  e.  A  ->  x  e.  B )  /\  A. x ( x  e.  B  ->  x  e.  A )
) )
2 dfcleq 2223 . 2  |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )
3 ssalel 3212 . . 3  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
4 ssalel 3212 . . 3  |-  ( B 
C_  A  <->  A. x
( x  e.  B  ->  x  e.  A ) )
53, 4anbi12i 460 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  <->  ( A. x ( x  e.  A  ->  x  e.  B )  /\  A. x ( x  e.  B  ->  x  e.  A ) ) )
61, 2, 53bitr4i 212 1  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    = wceq 1395    e. wcel 2200    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  eqssi  3240  eqssd  3241  sseq1  3247  sseq2  3248  eqimss  3278  ssrabeq  3311  uneqin  3455  ss0b  3531  vss  3539  sssnm  3832  unidif  3920  ssunieq  3921  iuneq1  3978  iuneq2  3981  iunxdif2  4014  ssext  4307  pweqb  4309  eqopab2b  4368  pwunim  4377  soeq2  4407  iunpw  4571  ordunisuc2r  4606  tfi  4674  eqrel  4808  eqrelrel  4820  coeq1  4879  coeq2  4880  cnveq  4896  dmeq  4923  relssres  5043  xp11m  5167  xpcanm  5168  xpcan2m  5169  ssrnres  5171  fnres  5440  eqfnfv3  5734  fneqeql2  5744  fconst4m  5859  f1imaeq  5899  eqoprab2b  6062  fo1stresm  6307  fo2ndresm  6308  nnacan  6658  nnmcan  6665  ixpeq2  6859  sbthlemi3  7126  wrdeq  11093  isprm2  12639  lssle0  14336  bastop1  14757  epttop  14764  opnneiid  14838  cnntr  14899  metequiv  15169  bj-sseq  16156  bdeq0  16230  bdvsn  16237  bdop  16238  bdeqsuc  16244  bj-om  16300
  Copyright terms: Public domain W3C validator