ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylnbi Unicode version

Theorem sylnbi 673
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnbi.1  |-  ( ph  <->  ps )
sylnbi.2  |-  ( -. 
ps  ->  ch )
Assertion
Ref Expression
sylnbi  |-  ( -. 
ph  ->  ch )

Proof of Theorem sylnbi
StepHypRef Expression
1 sylnbi.1 . . 3  |-  ( ph  <->  ps )
21notbii 663 . 2  |-  ( -. 
ph 
<->  -.  ps )
3 sylnbi.2 . 2  |-  ( -. 
ps  ->  ch )
42, 3sylbi 120 1  |-  ( -. 
ph  ->  ch )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sylnbir  674  mo2n  2047  reuun2  3410  regexmidlem1  4517  iotanul  5175  riotaund  5843  snnen2og  6837
  Copyright terms: Public domain W3C validator