| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sylnbi | Unicode version | ||
| Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) | 
| Ref | Expression | 
|---|---|
| sylnbi.1 | 
 | 
| sylnbi.2 | 
 | 
| Ref | Expression | 
|---|---|
| sylnbi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sylnbi.1 | 
. . 3
 | |
| 2 | 1 | notbii 669 | 
. 2
 | 
| 3 | sylnbi.2 | 
. 2
 | |
| 4 | 2, 3 | sylbi 121 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: sylnbir 680 mo2n 2073 reuun2 3446 regexmidlem1 4569 iotanul 5234 riotaund 5912 snnen2og 6920 | 
| Copyright terms: Public domain | W3C validator |