![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylnbi | Unicode version |
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnbi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylnbi.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylnbi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnbi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | notbii 668 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | sylnbi.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylbi 121 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: sylnbir 679 mo2n 2054 reuun2 3419 regexmidlem1 4533 iotanul 5194 riotaund 5865 snnen2og 6859 |
Copyright terms: Public domain | W3C validator |