Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > regexmidlem1 | Unicode version |
Description: Lemma for regexmid 4512. If has a minimal element, excluded middle follows. (Contributed by Jim Kingdon, 3-Sep-2019.) |
Ref | Expression |
---|---|
regexmidlemm.a |
Ref | Expression |
---|---|
regexmidlem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2172 | . . . . . . 7 | |
2 | eqeq1 2172 | . . . . . . . 8 | |
3 | 2 | anbi1d 461 | . . . . . . 7 |
4 | 1, 3 | orbi12d 783 | . . . . . 6 |
5 | regexmidlemm.a | . . . . . 6 | |
6 | 4, 5 | elrab2 2885 | . . . . 5 |
7 | 6 | simprbi 273 | . . . 4 |
8 | 0ex 4109 | . . . . . . . . 9 | |
9 | 8 | snid 3607 | . . . . . . . 8 |
10 | eleq2 2230 | . . . . . . . 8 | |
11 | 9, 10 | mpbiri 167 | . . . . . . 7 |
12 | eleq1 2229 | . . . . . . . . 9 | |
13 | eleq1 2229 | . . . . . . . . . 10 | |
14 | 13 | notbid 657 | . . . . . . . . 9 |
15 | 12, 14 | imbi12d 233 | . . . . . . . 8 |
16 | 8, 15 | spcv 2820 | . . . . . . 7 |
17 | 11, 16 | syl5com 29 | . . . . . 6 |
18 | 8 | prid1 3682 | . . . . . . . . . 10 |
19 | eqeq1 2172 | . . . . . . . . . . . 12 | |
20 | eqeq1 2172 | . . . . . . . . . . . . 13 | |
21 | 20 | anbi1d 461 | . . . . . . . . . . . 12 |
22 | 19, 21 | orbi12d 783 | . . . . . . . . . . 11 |
23 | 22, 5 | elrab2 2885 | . . . . . . . . . 10 |
24 | 18, 23 | mpbiran 930 | . . . . . . . . 9 |
25 | pm2.46 729 | . . . . . . . . 9 | |
26 | 24, 25 | sylnbi 668 | . . . . . . . 8 |
27 | eqid 2165 | . . . . . . . . 9 | |
28 | 27 | biantrur 301 | . . . . . . . 8 |
29 | 26, 28 | sylnibr 667 | . . . . . . 7 |
30 | 29 | olcd 724 | . . . . . 6 |
31 | 17, 30 | syl6 33 | . . . . 5 |
32 | orc 702 | . . . . . . 7 | |
33 | 32 | adantl 275 | . . . . . 6 |
34 | 33 | a1d 22 | . . . . 5 |
35 | 31, 34 | jaoi 706 | . . . 4 |
36 | 7, 35 | syl 14 | . . 3 |
37 | 36 | imp 123 | . 2 |
38 | 37 | exlimiv 1586 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 wal 1341 wceq 1343 wex 1480 wcel 2136 crab 2448 c0 3409 csn 3576 cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-nul 3410 df-sn 3582 df-pr 3583 |
This theorem is referenced by: regexmid 4512 nnregexmid 4598 |
Copyright terms: Public domain | W3C validator |