| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > regexmidlem1 | Unicode version | ||
| Description: Lemma for regexmid 4571. If |
| Ref | Expression |
|---|---|
| regexmidlemm.a |
|
| Ref | Expression |
|---|---|
| regexmidlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2203 |
. . . . . . 7
| |
| 2 | eqeq1 2203 |
. . . . . . . 8
| |
| 3 | 2 | anbi1d 465 |
. . . . . . 7
|
| 4 | 1, 3 | orbi12d 794 |
. . . . . 6
|
| 5 | regexmidlemm.a |
. . . . . 6
| |
| 6 | 4, 5 | elrab2 2923 |
. . . . 5
|
| 7 | 6 | simprbi 275 |
. . . 4
|
| 8 | 0ex 4160 |
. . . . . . . . 9
| |
| 9 | 8 | snid 3653 |
. . . . . . . 8
|
| 10 | eleq2 2260 |
. . . . . . . 8
| |
| 11 | 9, 10 | mpbiri 168 |
. . . . . . 7
|
| 12 | eleq1 2259 |
. . . . . . . . 9
| |
| 13 | eleq1 2259 |
. . . . . . . . . 10
| |
| 14 | 13 | notbid 668 |
. . . . . . . . 9
|
| 15 | 12, 14 | imbi12d 234 |
. . . . . . . 8
|
| 16 | 8, 15 | spcv 2858 |
. . . . . . 7
|
| 17 | 11, 16 | syl5com 29 |
. . . . . 6
|
| 18 | 8 | prid1 3728 |
. . . . . . . . . 10
|
| 19 | eqeq1 2203 |
. . . . . . . . . . . 12
| |
| 20 | eqeq1 2203 |
. . . . . . . . . . . . 13
| |
| 21 | 20 | anbi1d 465 |
. . . . . . . . . . . 12
|
| 22 | 19, 21 | orbi12d 794 |
. . . . . . . . . . 11
|
| 23 | 22, 5 | elrab2 2923 |
. . . . . . . . . 10
|
| 24 | 18, 23 | mpbiran 942 |
. . . . . . . . 9
|
| 25 | pm2.46 740 |
. . . . . . . . 9
| |
| 26 | 24, 25 | sylnbi 679 |
. . . . . . . 8
|
| 27 | eqid 2196 |
. . . . . . . . 9
| |
| 28 | 27 | biantrur 303 |
. . . . . . . 8
|
| 29 | 26, 28 | sylnibr 678 |
. . . . . . 7
|
| 30 | 29 | olcd 735 |
. . . . . 6
|
| 31 | 17, 30 | syl6 33 |
. . . . 5
|
| 32 | orc 713 |
. . . . . . 7
| |
| 33 | 32 | adantl 277 |
. . . . . 6
|
| 34 | 33 | a1d 22 |
. . . . 5
|
| 35 | 31, 34 | jaoi 717 |
. . . 4
|
| 36 | 7, 35 | syl 14 |
. . 3
|
| 37 | 36 | imp 124 |
. 2
|
| 38 | 37 | exlimiv 1612 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4159 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-nul 3451 df-sn 3628 df-pr 3629 |
| This theorem is referenced by: regexmid 4571 nnregexmid 4657 |
| Copyright terms: Public domain | W3C validator |