| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > regexmidlem1 | Unicode version | ||
| Description: Lemma for regexmid 4624. If |
| Ref | Expression |
|---|---|
| regexmidlemm.a |
|
| Ref | Expression |
|---|---|
| regexmidlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2236 |
. . . . . . 7
| |
| 2 | eqeq1 2236 |
. . . . . . . 8
| |
| 3 | 2 | anbi1d 465 |
. . . . . . 7
|
| 4 | 1, 3 | orbi12d 798 |
. . . . . 6
|
| 5 | regexmidlemm.a |
. . . . . 6
| |
| 6 | 4, 5 | elrab2 2962 |
. . . . 5
|
| 7 | 6 | simprbi 275 |
. . . 4
|
| 8 | 0ex 4210 |
. . . . . . . . 9
| |
| 9 | 8 | snid 3697 |
. . . . . . . 8
|
| 10 | eleq2 2293 |
. . . . . . . 8
| |
| 11 | 9, 10 | mpbiri 168 |
. . . . . . 7
|
| 12 | eleq1 2292 |
. . . . . . . . 9
| |
| 13 | eleq1 2292 |
. . . . . . . . . 10
| |
| 14 | 13 | notbid 671 |
. . . . . . . . 9
|
| 15 | 12, 14 | imbi12d 234 |
. . . . . . . 8
|
| 16 | 8, 15 | spcv 2897 |
. . . . . . 7
|
| 17 | 11, 16 | syl5com 29 |
. . . . . 6
|
| 18 | 8 | prid1 3772 |
. . . . . . . . . 10
|
| 19 | eqeq1 2236 |
. . . . . . . . . . . 12
| |
| 20 | eqeq1 2236 |
. . . . . . . . . . . . 13
| |
| 21 | 20 | anbi1d 465 |
. . . . . . . . . . . 12
|
| 22 | 19, 21 | orbi12d 798 |
. . . . . . . . . . 11
|
| 23 | 22, 5 | elrab2 2962 |
. . . . . . . . . 10
|
| 24 | 18, 23 | mpbiran 946 |
. . . . . . . . 9
|
| 25 | pm2.46 744 |
. . . . . . . . 9
| |
| 26 | 24, 25 | sylnbi 682 |
. . . . . . . 8
|
| 27 | eqid 2229 |
. . . . . . . . 9
| |
| 28 | 27 | biantrur 303 |
. . . . . . . 8
|
| 29 | 26, 28 | sylnibr 681 |
. . . . . . 7
|
| 30 | 29 | olcd 739 |
. . . . . 6
|
| 31 | 17, 30 | syl6 33 |
. . . . 5
|
| 32 | orc 717 |
. . . . . . 7
| |
| 33 | 32 | adantl 277 |
. . . . . 6
|
| 34 | 33 | a1d 22 |
. . . . 5
|
| 35 | 31, 34 | jaoi 721 |
. . . 4
|
| 36 | 7, 35 | syl 14 |
. . 3
|
| 37 | 36 | imp 124 |
. 2
|
| 38 | 37 | exlimiv 1644 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4209 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: regexmid 4624 nnregexmid 4710 |
| Copyright terms: Public domain | W3C validator |