ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuun2 Unicode version

Theorem reuun2 3446
Description: Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.)
Assertion
Ref Expression
reuun2  |-  ( -. 
E. x  e.  B  ph 
->  ( E! x  e.  ( A  u.  B
) ph  <->  E! x  e.  A  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem reuun2
StepHypRef Expression
1 df-rex 2481 . . 3  |-  ( E. x  e.  B  ph  <->  E. x ( x  e.  B  /\  ph )
)
2 euor2 2103 . . 3  |-  ( -. 
E. x ( x  e.  B  /\  ph )  ->  ( E! x
( ( x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph ) )  <->  E! x
( x  e.  A  /\  ph ) ) )
31, 2sylnbi 679 . 2  |-  ( -. 
E. x  e.  B  ph 
->  ( E! x ( ( x  e.  B  /\  ph )  \/  (
x  e.  A  /\  ph ) )  <->  E! x
( x  e.  A  /\  ph ) ) )
4 df-reu 2482 . . 3  |-  ( E! x  e.  ( A  u.  B ) ph  <->  E! x ( x  e.  ( A  u.  B
)  /\  ph ) )
5 elun 3304 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
65anbi1i 458 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ph ) )
7 andir 820 . . . . . 6  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ph )  <->  ( (
x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) )
8 orcom 729 . . . . . 6  |-  ( ( ( x  e.  A  /\  ph )  \/  (
x  e.  B  /\  ph ) )  <->  ( (
x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph ) ) )
97, 8bitri 184 . . . . 5  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ph )  <->  ( (
x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph ) ) )
106, 9bitri 184 . . . 4  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph )
) )
1110eubii 2054 . . 3  |-  ( E! x ( x  e.  ( A  u.  B
)  /\  ph )  <->  E! x
( ( x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph ) ) )
124, 11bitri 184 . 2  |-  ( E! x  e.  ( A  u.  B ) ph  <->  E! x ( ( x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph )
) )
13 df-reu 2482 . 2  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
143, 12, 133bitr4g 223 1  |-  ( -. 
E. x  e.  B  ph 
->  ( E! x  e.  ( A  u.  B
) ph  <->  E! x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709   E.wex 1506   E!weu 2045    e. wcel 2167   E.wrex 2476   E!wreu 2477    u. cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-reu 2482  df-v 2765  df-un 3161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator