ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuun2 Unicode version

Theorem reuun2 3419
Description: Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.)
Assertion
Ref Expression
reuun2  |-  ( -. 
E. x  e.  B  ph 
->  ( E! x  e.  ( A  u.  B
) ph  <->  E! x  e.  A  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem reuun2
StepHypRef Expression
1 df-rex 2461 . . 3  |-  ( E. x  e.  B  ph  <->  E. x ( x  e.  B  /\  ph )
)
2 euor2 2084 . . 3  |-  ( -. 
E. x ( x  e.  B  /\  ph )  ->  ( E! x
( ( x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph ) )  <->  E! x
( x  e.  A  /\  ph ) ) )
31, 2sylnbi 678 . 2  |-  ( -. 
E. x  e.  B  ph 
->  ( E! x ( ( x  e.  B  /\  ph )  \/  (
x  e.  A  /\  ph ) )  <->  E! x
( x  e.  A  /\  ph ) ) )
4 df-reu 2462 . . 3  |-  ( E! x  e.  ( A  u.  B ) ph  <->  E! x ( x  e.  ( A  u.  B
)  /\  ph ) )
5 elun 3277 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
65anbi1i 458 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ph ) )
7 andir 819 . . . . . 6  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ph )  <->  ( (
x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) )
8 orcom 728 . . . . . 6  |-  ( ( ( x  e.  A  /\  ph )  \/  (
x  e.  B  /\  ph ) )  <->  ( (
x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph ) ) )
97, 8bitri 184 . . . . 5  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ph )  <->  ( (
x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph ) ) )
106, 9bitri 184 . . . 4  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph )
) )
1110eubii 2035 . . 3  |-  ( E! x ( x  e.  ( A  u.  B
)  /\  ph )  <->  E! x
( ( x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph ) ) )
124, 11bitri 184 . 2  |-  ( E! x  e.  ( A  u.  B ) ph  <->  E! x ( ( x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph )
) )
13 df-reu 2462 . 2  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
143, 12, 133bitr4g 223 1  |-  ( -. 
E. x  e.  B  ph 
->  ( E! x  e.  ( A  u.  B
) ph  <->  E! x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708   E.wex 1492   E!weu 2026    e. wcel 2148   E.wrex 2456   E!wreu 2457    u. cun 3128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-reu 2462  df-v 2740  df-un 3134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator