ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuun2 Unicode version

Theorem reuun2 3456
Description: Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.)
Assertion
Ref Expression
reuun2  |-  ( -. 
E. x  e.  B  ph 
->  ( E! x  e.  ( A  u.  B
) ph  <->  E! x  e.  A  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem reuun2
StepHypRef Expression
1 df-rex 2490 . . 3  |-  ( E. x  e.  B  ph  <->  E. x ( x  e.  B  /\  ph )
)
2 euor2 2112 . . 3  |-  ( -. 
E. x ( x  e.  B  /\  ph )  ->  ( E! x
( ( x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph ) )  <->  E! x
( x  e.  A  /\  ph ) ) )
31, 2sylnbi 680 . 2  |-  ( -. 
E. x  e.  B  ph 
->  ( E! x ( ( x  e.  B  /\  ph )  \/  (
x  e.  A  /\  ph ) )  <->  E! x
( x  e.  A  /\  ph ) ) )
4 df-reu 2491 . . 3  |-  ( E! x  e.  ( A  u.  B ) ph  <->  E! x ( x  e.  ( A  u.  B
)  /\  ph ) )
5 elun 3314 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
65anbi1i 458 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ph ) )
7 andir 821 . . . . . 6  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ph )  <->  ( (
x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) )
8 orcom 730 . . . . . 6  |-  ( ( ( x  e.  A  /\  ph )  \/  (
x  e.  B  /\  ph ) )  <->  ( (
x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph ) ) )
97, 8bitri 184 . . . . 5  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ph )  <->  ( (
x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph ) ) )
106, 9bitri 184 . . . 4  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph )
) )
1110eubii 2063 . . 3  |-  ( E! x ( x  e.  ( A  u.  B
)  /\  ph )  <->  E! x
( ( x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph ) ) )
124, 11bitri 184 . 2  |-  ( E! x  e.  ( A  u.  B ) ph  <->  E! x ( ( x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph )
) )
13 df-reu 2491 . 2  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
143, 12, 133bitr4g 223 1  |-  ( -. 
E. x  e.  B  ph 
->  ( E! x  e.  ( A  u.  B
) ph  <->  E! x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710   E.wex 1515   E!weu 2054    e. wcel 2176   E.wrex 2485   E!wreu 2486    u. cun 3164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-reu 2491  df-v 2774  df-un 3170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator