ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuun2 Unicode version

Theorem reuun2 3410
Description: Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.)
Assertion
Ref Expression
reuun2  |-  ( -. 
E. x  e.  B  ph 
->  ( E! x  e.  ( A  u.  B
) ph  <->  E! x  e.  A  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem reuun2
StepHypRef Expression
1 df-rex 2454 . . 3  |-  ( E. x  e.  B  ph  <->  E. x ( x  e.  B  /\  ph )
)
2 euor2 2077 . . 3  |-  ( -. 
E. x ( x  e.  B  /\  ph )  ->  ( E! x
( ( x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph ) )  <->  E! x
( x  e.  A  /\  ph ) ) )
31, 2sylnbi 673 . 2  |-  ( -. 
E. x  e.  B  ph 
->  ( E! x ( ( x  e.  B  /\  ph )  \/  (
x  e.  A  /\  ph ) )  <->  E! x
( x  e.  A  /\  ph ) ) )
4 df-reu 2455 . . 3  |-  ( E! x  e.  ( A  u.  B ) ph  <->  E! x ( x  e.  ( A  u.  B
)  /\  ph ) )
5 elun 3268 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
65anbi1i 455 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ph ) )
7 andir 814 . . . . . 6  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ph )  <->  ( (
x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) )
8 orcom 723 . . . . . 6  |-  ( ( ( x  e.  A  /\  ph )  \/  (
x  e.  B  /\  ph ) )  <->  ( (
x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph ) ) )
97, 8bitri 183 . . . . 5  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ph )  <->  ( (
x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph ) ) )
106, 9bitri 183 . . . 4  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph )
) )
1110eubii 2028 . . 3  |-  ( E! x ( x  e.  ( A  u.  B
)  /\  ph )  <->  E! x
( ( x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph ) ) )
124, 11bitri 183 . 2  |-  ( E! x  e.  ( A  u.  B ) ph  <->  E! x ( ( x  e.  B  /\  ph )  \/  ( x  e.  A  /\  ph )
) )
13 df-reu 2455 . 2  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
143, 12, 133bitr4g 222 1  |-  ( -. 
E. x  e.  B  ph 
->  ( E! x  e.  ( A  u.  B
) ph  <->  E! x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703   E.wex 1485   E!weu 2019    e. wcel 2141   E.wrex 2449   E!wreu 2450    u. cun 3119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-reu 2455  df-v 2732  df-un 3125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator