Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reuun2 | Unicode version |
Description: Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.) |
Ref | Expression |
---|---|
reuun2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2441 | . . 3 | |
2 | euor2 2064 | . . 3 | |
3 | 1, 2 | sylnbi 668 | . 2 |
4 | df-reu 2442 | . . 3 | |
5 | elun 3248 | . . . . . 6 | |
6 | 5 | anbi1i 454 | . . . . 5 |
7 | andir 809 | . . . . . 6 | |
8 | orcom 718 | . . . . . 6 | |
9 | 7, 8 | bitri 183 | . . . . 5 |
10 | 6, 9 | bitri 183 | . . . 4 |
11 | 10 | eubii 2015 | . . 3 |
12 | 4, 11 | bitri 183 | . 2 |
13 | df-reu 2442 | . 2 | |
14 | 3, 12, 13 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wex 1472 weu 2006 wcel 2128 wrex 2436 wreu 2437 cun 3100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-reu 2442 df-v 2714 df-un 3106 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |