ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaund Unicode version

Theorem riotaund 5908
Description: Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.)
Assertion
Ref Expression
riotaund  |-  ( -.  E! x  e.  A  ph 
->  ( iota_ x  e.  A  ph )  =  (/) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem riotaund
StepHypRef Expression
1 df-riota 5873 . 2  |-  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )
2 df-reu 2479 . . 3  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
3 iotanul 5230 . . 3  |-  ( -.  E! x ( x  e.  A  /\  ph )  ->  ( iota x
( x  e.  A  /\  ph ) )  =  (/) )
42, 3sylnbi 679 . 2  |-  ( -.  E! x  e.  A  ph 
->  ( iota x ( x  e.  A  /\  ph ) )  =  (/) )
51, 4eqtrid 2238 1  |-  ( -.  E! x  e.  A  ph 
->  ( iota_ x  e.  A  ph )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364   E!weu 2042    e. wcel 2164   E!wreu 2474   (/)c0 3446   iotacio 5213   iota_crio 5872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-uni 3836  df-iota 5215  df-riota 5873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator