ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaund Unicode version

Theorem riotaund 5864
Description: Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.)
Assertion
Ref Expression
riotaund  |-  ( -.  E! x  e.  A  ph 
->  ( iota_ x  e.  A  ph )  =  (/) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem riotaund
StepHypRef Expression
1 df-riota 5830 . 2  |-  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )
2 df-reu 2462 . . 3  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
3 iotanul 5193 . . 3  |-  ( -.  E! x ( x  e.  A  /\  ph )  ->  ( iota x
( x  e.  A  /\  ph ) )  =  (/) )
42, 3sylnbi 678 . 2  |-  ( -.  E! x  e.  A  ph 
->  ( iota x ( x  e.  A  /\  ph ) )  =  (/) )
51, 4eqtrid 2222 1  |-  ( -.  E! x  e.  A  ph 
->  ( iota_ x  e.  A  ph )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1353   E!weu 2026    e. wcel 2148   E!wreu 2457   (/)c0 3422   iotacio 5176   iota_crio 5829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-v 2739  df-dif 3131  df-in 3135  df-ss 3142  df-nul 3423  df-sn 3598  df-uni 3810  df-iota 5178  df-riota 5830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator