ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaund Unicode version

Theorem riotaund 5581
Description: Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.)
Assertion
Ref Expression
riotaund  |-  ( -.  E! x  e.  A  ph 
->  ( iota_ x  e.  A  ph )  =  (/) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem riotaund
StepHypRef Expression
1 df-riota 5547 . 2  |-  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )
2 df-reu 2360 . . 3  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
3 iotanul 4949 . . 3  |-  ( -.  E! x ( x  e.  A  /\  ph )  ->  ( iota x
( x  e.  A  /\  ph ) )  =  (/) )
42, 3sylnbi 636 . 2  |-  ( -.  E! x  e.  A  ph 
->  ( iota x ( x  e.  A  /\  ph ) )  =  (/) )
51, 4syl5eq 2127 1  |-  ( -.  E! x  e.  A  ph 
->  ( iota_ x  e.  A  ph )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   E!weu 1943   E!wreu 2355   (/)c0 3269   iotacio 4932   iota_crio 5546
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-reu 2360  df-v 2614  df-dif 2986  df-in 2990  df-ss 2997  df-nul 3270  df-sn 3428  df-uni 3628  df-iota 4934  df-riota 5547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator