![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylnibr | Unicode version |
Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnibr.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sylnibr.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylnibr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnibr.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylnibr.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | sylnib 676 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: rexnalim 2466 nssr 3215 difdif 3260 unssin 3374 inssun 3375 undif3ss 3396 ssdif0im 3487 dcun 3533 prneimg 3774 iundif2ss 3952 nssssr 4222 pofun 4312 frirrg 4350 regexmidlem1 4532 dcdifsnid 6504 unfidisj 6920 fidcenumlemrks 6951 difinfsn 7098 pw1nel3 7229 addnqprlemfl 7557 addnqprlemfu 7558 mulnqprlemfl 7573 mulnqprlemfu 7574 cauappcvgprlemladdru 7654 caucvgprprlemaddq 7706 fzpreddisj 10070 fprodntrivap 11591 pw2dvdslemn 12164 isnsgrp 12811 ivthinclemdisj 14088 lgseisenlem1 14420 pwtrufal 14717 pw1nct 14722 nninfsellemsuc 14731 |
Copyright terms: Public domain | W3C validator |