| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylnibr | Unicode version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnibr.1 |
|
| sylnibr.2 |
|
| Ref | Expression |
|---|---|
| sylnibr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnibr.1 |
. 2
| |
| 2 | sylnibr.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | sylnib 680 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rexnalim 2519 nssr 3284 difdif 3329 unssin 3443 inssun 3444 undif3ss 3465 ssdif0im 3556 dcun 3601 prneimg 3852 iundif2ss 4031 nssssr 4308 pofun 4403 frirrg 4441 regexmidlem1 4625 dcdifsnid 6650 unfidisj 7084 fidcenumlemrks 7120 difinfsn 7267 pw1nel3 7416 addnqprlemfl 7746 addnqprlemfu 7747 mulnqprlemfl 7762 mulnqprlemfu 7763 cauappcvgprlemladdru 7843 caucvgprprlemaddq 7895 fzpreddisj 10267 fprodntrivap 12095 pw2dvdslemn 12687 isnsgrp 13439 ivthinclemdisj 15314 dvply1 15439 lgseisenlem1 15749 lgsquadlem3 15758 structiedg0val 15841 umgr2edg1 16007 umgr2edgneu 16010 pwtrufal 16363 pw1nct 16369 nninfsellemsuc 16378 |
| Copyright terms: Public domain | W3C validator |