| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylnibr | Unicode version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnibr.1 |
|
| sylnibr.2 |
|
| Ref | Expression |
|---|---|
| sylnibr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnibr.1 |
. 2
| |
| 2 | sylnibr.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | sylnib 678 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rexnalim 2495 nssr 3253 difdif 3298 unssin 3412 inssun 3413 undif3ss 3434 ssdif0im 3525 dcun 3570 prneimg 3815 iundif2ss 3993 nssssr 4267 pofun 4360 frirrg 4398 regexmidlem1 4582 dcdifsnid 6592 unfidisj 7021 fidcenumlemrks 7057 difinfsn 7204 pw1nel3 7345 addnqprlemfl 7674 addnqprlemfu 7675 mulnqprlemfl 7690 mulnqprlemfu 7691 cauappcvgprlemladdru 7771 caucvgprprlemaddq 7823 fzpreddisj 10195 fprodntrivap 11928 pw2dvdslemn 12520 isnsgrp 13271 ivthinclemdisj 15145 dvply1 15270 lgseisenlem1 15580 lgsquadlem3 15589 structiedg0val 15670 pwtrufal 15971 pw1nct 15977 nninfsellemsuc 15986 |
| Copyright terms: Public domain | W3C validator |