| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylnibr | Unicode version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnibr.1 |
|
| sylnibr.2 |
|
| Ref | Expression |
|---|---|
| sylnibr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnibr.1 |
. 2
| |
| 2 | sylnibr.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | sylnib 678 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rexnalim 2497 nssr 3261 difdif 3306 unssin 3420 inssun 3421 undif3ss 3442 ssdif0im 3533 dcun 3578 prneimg 3828 iundif2ss 4007 nssssr 4284 pofun 4377 frirrg 4415 regexmidlem1 4599 dcdifsnid 6613 unfidisj 7045 fidcenumlemrks 7081 difinfsn 7228 pw1nel3 7377 addnqprlemfl 7707 addnqprlemfu 7708 mulnqprlemfl 7723 mulnqprlemfu 7724 cauappcvgprlemladdru 7804 caucvgprprlemaddq 7856 fzpreddisj 10228 fprodntrivap 12010 pw2dvdslemn 12602 isnsgrp 13353 ivthinclemdisj 15227 dvply1 15352 lgseisenlem1 15662 lgsquadlem3 15671 structiedg0val 15754 pwtrufal 16136 pw1nct 16142 nninfsellemsuc 16151 |
| Copyright terms: Public domain | W3C validator |