| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylnibr | Unicode version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnibr.1 |
|
| sylnibr.2 |
|
| Ref | Expression |
|---|---|
| sylnibr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnibr.1 |
. 2
| |
| 2 | sylnibr.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | sylnib 678 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rexnalim 2495 nssr 3253 difdif 3298 unssin 3412 inssun 3413 undif3ss 3434 ssdif0im 3525 dcun 3570 prneimg 3815 iundif2ss 3993 nssssr 4266 pofun 4359 frirrg 4397 regexmidlem1 4581 dcdifsnid 6590 unfidisj 7019 fidcenumlemrks 7055 difinfsn 7202 pw1nel3 7343 addnqprlemfl 7672 addnqprlemfu 7673 mulnqprlemfl 7688 mulnqprlemfu 7689 cauappcvgprlemladdru 7769 caucvgprprlemaddq 7821 fzpreddisj 10193 fprodntrivap 11895 pw2dvdslemn 12487 isnsgrp 13238 ivthinclemdisj 15112 dvply1 15237 lgseisenlem1 15547 lgsquadlem3 15556 structiedg0val 15637 pwtrufal 15938 pw1nct 15944 nninfsellemsuc 15953 |
| Copyright terms: Public domain | W3C validator |