ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotanul Unicode version

Theorem iotanul 5168
Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one  x that satisfies  ph. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotanul  |-  ( -.  E! x ph  ->  ( iota x ph )  =  (/) )

Proof of Theorem iotanul
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-eu 2017 . . 3  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
2 dfiota2 5154 . . . 4  |-  ( iota
x ph )  =  U. { z  |  A. x ( ph  <->  x  =  z ) }
3 alnex 1487 . . . . . . 7  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  <->  -.  E. z A. x
( ph  <->  x  =  z
) )
4 ax-in2 605 . . . . . . . . . 10  |-  ( -. 
A. x ( ph  <->  x  =  z )  -> 
( A. x (
ph 
<->  x  =  z )  ->  -.  z  =  z ) )
54alimi 1443 . . . . . . . . 9  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  ->  A. z ( A. x ( ph  <->  x  =  z )  ->  -.  z  =  z )
)
6 ss2ab 3210 . . . . . . . . 9  |-  ( { z  |  A. x
( ph  <->  x  =  z
) }  C_  { z  |  -.  z  =  z }  <->  A. z
( A. x (
ph 
<->  x  =  z )  ->  -.  z  =  z ) )
75, 6sylibr 133 . . . . . . . 8  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  ->  { z  | 
A. x ( ph  <->  x  =  z ) } 
C_  { z  |  -.  z  =  z } )
8 dfnul2 3411 . . . . . . . 8  |-  (/)  =  {
z  |  -.  z  =  z }
97, 8sseqtrrdi 3191 . . . . . . 7  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  ->  { z  | 
A. x ( ph  <->  x  =  z ) } 
C_  (/) )
103, 9sylbir 134 . . . . . 6  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  { z  |  A. x ( ph  <->  x  =  z ) } 
C_  (/) )
1110unissd 3813 . . . . 5  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  U. { z  |  A. x (
ph 
<->  x  =  z ) }  C_  U. (/) )
12 uni0 3816 . . . . 5  |-  U. (/)  =  (/)
1311, 12sseqtrdi 3190 . . . 4  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  U. { z  |  A. x (
ph 
<->  x  =  z ) }  C_  (/) )
142, 13eqsstrid 3188 . . 3  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  ( iota x ph )  C_  (/) )
151, 14sylnbi 668 . 2  |-  ( -.  E! x ph  ->  ( iota x ph )  C_  (/) )
16 ss0 3449 . 2  |-  ( ( iota x ph )  C_  (/)  ->  ( iota x ph )  =  (/) )
1715, 16syl 14 1  |-  ( -.  E! x ph  ->  ( iota x ph )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104   A.wal 1341    = wceq 1343   E.wex 1480   E!weu 2014   {cab 2151    C_ wss 3116   (/)c0 3409   U.cuni 3789   iotacio 5151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-uni 3790  df-iota 5153
This theorem is referenced by:  tz6.12-2  5477  0fv  5521  riotaund  5832  0g0  12607
  Copyright terms: Public domain W3C validator