ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotanul Unicode version

Theorem iotanul 5234
Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one  x that satisfies  ph. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotanul  |-  ( -.  E! x ph  ->  ( iota x ph )  =  (/) )

Proof of Theorem iotanul
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-eu 2048 . . 3  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
2 dfiota2 5220 . . . 4  |-  ( iota
x ph )  =  U. { z  |  A. x ( ph  <->  x  =  z ) }
3 alnex 1513 . . . . . . 7  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  <->  -.  E. z A. x
( ph  <->  x  =  z
) )
4 ax-in2 616 . . . . . . . . . 10  |-  ( -. 
A. x ( ph  <->  x  =  z )  -> 
( A. x (
ph 
<->  x  =  z )  ->  -.  z  =  z ) )
54alimi 1469 . . . . . . . . 9  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  ->  A. z ( A. x ( ph  <->  x  =  z )  ->  -.  z  =  z )
)
6 ss2ab 3251 . . . . . . . . 9  |-  ( { z  |  A. x
( ph  <->  x  =  z
) }  C_  { z  |  -.  z  =  z }  <->  A. z
( A. x (
ph 
<->  x  =  z )  ->  -.  z  =  z ) )
75, 6sylibr 134 . . . . . . . 8  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  ->  { z  | 
A. x ( ph  <->  x  =  z ) } 
C_  { z  |  -.  z  =  z } )
8 dfnul2 3452 . . . . . . . 8  |-  (/)  =  {
z  |  -.  z  =  z }
97, 8sseqtrrdi 3232 . . . . . . 7  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  ->  { z  | 
A. x ( ph  <->  x  =  z ) } 
C_  (/) )
103, 9sylbir 135 . . . . . 6  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  { z  |  A. x ( ph  <->  x  =  z ) } 
C_  (/) )
1110unissd 3863 . . . . 5  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  U. { z  |  A. x (
ph 
<->  x  =  z ) }  C_  U. (/) )
12 uni0 3866 . . . . 5  |-  U. (/)  =  (/)
1311, 12sseqtrdi 3231 . . . 4  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  U. { z  |  A. x (
ph 
<->  x  =  z ) }  C_  (/) )
142, 13eqsstrid 3229 . . 3  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  ( iota x ph )  C_  (/) )
151, 14sylnbi 679 . 2  |-  ( -.  E! x ph  ->  ( iota x ph )  C_  (/) )
16 ss0 3491 . 2  |-  ( ( iota x ph )  C_  (/)  ->  ( iota x ph )  =  (/) )
1715, 16syl 14 1  |-  ( -.  E! x ph  ->  ( iota x ph )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1506   E!weu 2045   {cab 2182    C_ wss 3157   (/)c0 3450   U.cuni 3839   iotacio 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-uni 3840  df-iota 5219
This theorem is referenced by:  tz6.12-2  5549  0fv  5594  riotaund  5912  0g0  13019
  Copyright terms: Public domain W3C validator