| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotanul | Unicode version | ||
| Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there
isn't exactly one |
| Ref | Expression |
|---|---|
| iotanul |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2058 |
. . 3
| |
| 2 | dfiota2 5242 |
. . . 4
| |
| 3 | alnex 1523 |
. . . . . . 7
| |
| 4 | ax-in2 616 |
. . . . . . . . . 10
| |
| 5 | 4 | alimi 1479 |
. . . . . . . . 9
|
| 6 | ss2ab 3265 |
. . . . . . . . 9
| |
| 7 | 5, 6 | sylibr 134 |
. . . . . . . 8
|
| 8 | dfnul2 3466 |
. . . . . . . 8
| |
| 9 | 7, 8 | sseqtrrdi 3246 |
. . . . . . 7
|
| 10 | 3, 9 | sylbir 135 |
. . . . . 6
|
| 11 | 10 | unissd 3880 |
. . . . 5
|
| 12 | uni0 3883 |
. . . . 5
| |
| 13 | 11, 12 | sseqtrdi 3245 |
. . . 4
|
| 14 | 2, 13 | eqsstrid 3243 |
. . 3
|
| 15 | 1, 14 | sylnbi 680 |
. 2
|
| 16 | ss0 3505 |
. 2
| |
| 17 | 15, 16 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 df-nul 3465 df-sn 3644 df-uni 3857 df-iota 5241 |
| This theorem is referenced by: tz6.12-2 5580 0fv 5625 riotaund 5947 0g0 13283 |
| Copyright terms: Public domain | W3C validator |