| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotanul | Unicode version | ||
| Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there
isn't exactly one |
| Ref | Expression |
|---|---|
| iotanul |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2056 |
. . 3
| |
| 2 | dfiota2 5230 |
. . . 4
| |
| 3 | alnex 1521 |
. . . . . . 7
| |
| 4 | ax-in2 616 |
. . . . . . . . . 10
| |
| 5 | 4 | alimi 1477 |
. . . . . . . . 9
|
| 6 | ss2ab 3260 |
. . . . . . . . 9
| |
| 7 | 5, 6 | sylibr 134 |
. . . . . . . 8
|
| 8 | dfnul2 3461 |
. . . . . . . 8
| |
| 9 | 7, 8 | sseqtrrdi 3241 |
. . . . . . 7
|
| 10 | 3, 9 | sylbir 135 |
. . . . . 6
|
| 11 | 10 | unissd 3873 |
. . . . 5
|
| 12 | uni0 3876 |
. . . . 5
| |
| 13 | 11, 12 | sseqtrdi 3240 |
. . . 4
|
| 14 | 2, 13 | eqsstrid 3238 |
. . 3
|
| 15 | 1, 14 | sylnbi 679 |
. 2
|
| 16 | ss0 3500 |
. 2
| |
| 17 | 15, 16 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-in 3171 df-ss 3178 df-nul 3460 df-sn 3638 df-uni 3850 df-iota 5229 |
| This theorem is referenced by: tz6.12-2 5561 0fv 5606 riotaund 5924 0g0 13126 |
| Copyright terms: Public domain | W3C validator |