| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotanul | Unicode version | ||
| Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there
isn't exactly one |
| Ref | Expression |
|---|---|
| iotanul |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2080 |
. . 3
| |
| 2 | dfiota2 5278 |
. . . 4
| |
| 3 | alnex 1545 |
. . . . . . 7
| |
| 4 | ax-in2 618 |
. . . . . . . . . 10
| |
| 5 | 4 | alimi 1501 |
. . . . . . . . 9
|
| 6 | ss2ab 3292 |
. . . . . . . . 9
| |
| 7 | 5, 6 | sylibr 134 |
. . . . . . . 8
|
| 8 | dfnul2 3493 |
. . . . . . . 8
| |
| 9 | 7, 8 | sseqtrrdi 3273 |
. . . . . . 7
|
| 10 | 3, 9 | sylbir 135 |
. . . . . 6
|
| 11 | 10 | unissd 3911 |
. . . . 5
|
| 12 | uni0 3914 |
. . . . 5
| |
| 13 | 11, 12 | sseqtrdi 3272 |
. . . 4
|
| 14 | 2, 13 | eqsstrid 3270 |
. . 3
|
| 15 | 1, 14 | sylnbi 682 |
. 2
|
| 16 | ss0 3532 |
. 2
| |
| 17 | 15, 16 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-uni 3888 df-iota 5277 |
| This theorem is referenced by: tz6.12-2 5617 0fv 5664 riotaund 5990 0g0 13404 |
| Copyright terms: Public domain | W3C validator |