| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfex | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
| Ref | Expression |
|---|---|
| nfex.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfex.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1543 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | 2 | hbex 1660 | . 2 ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
| 4 | 3 | nfi 1486 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1484 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: eeor 1719 cbvexv1 1776 cbvex2 1947 eean 1960 nfsbv 1976 nfeu1 2066 nfeuv 2073 nfel 2359 ceqsex2 2818 nfopab 4128 nfopab2 4130 cbvopab1 4133 cbvopab1s 4135 repizf2 4222 copsex2t 4307 copsex2g 4308 euotd 4317 onintrab2im 4584 mosubopt 4758 nfco 4861 dfdmf 4890 dfrnf 4938 nfdm 4941 fv3 5622 nfoprab2 6018 nfoprab3 6019 nfoprab 6020 cbvoprab1 6040 cbvoprab2 6041 cbvoprab3 6044 cnvoprab 6343 ac6sfi 7021 cc3 7415 nfsum1 11782 nfsum 11783 fsum2dlemstep 11860 nfcprod1 11980 nfcprod 11981 fprod2dlemstep 12048 lss1d 14260 |
| Copyright terms: Public domain | W3C validator |