| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfex | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
| Ref | Expression |
|---|---|
| nfex.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfex.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1541 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | 2 | hbex 1658 | . 2 ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
| 4 | 3 | nfi 1484 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1482 ∃wex 1514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 |
| This theorem is referenced by: eeor 1717 cbvexv1 1774 cbvex2 1945 eean 1958 nfsbv 1974 nfeu1 2064 nfeuv 2071 nfel 2356 ceqsex2 2812 nfopab 4111 nfopab2 4113 cbvopab1 4116 cbvopab1s 4118 repizf2 4205 copsex2t 4288 copsex2g 4289 euotd 4298 onintrab2im 4565 mosubopt 4739 nfco 4842 dfdmf 4870 dfrnf 4918 nfdm 4921 fv3 5598 nfoprab2 5994 nfoprab3 5995 nfoprab 5996 cbvoprab1 6016 cbvoprab2 6017 cbvoprab3 6020 cnvoprab 6319 ac6sfi 6994 cc3 7379 nfsum1 11638 nfsum 11639 fsum2dlemstep 11716 nfcprod1 11836 nfcprod 11837 fprod2dlemstep 11904 lss1d 14116 |
| Copyright terms: Public domain | W3C validator |