| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfex | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
| Ref | Expression |
|---|---|
| nfex.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfex.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1565 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | 2 | hbex 1682 | . 2 ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
| 4 | 3 | nfi 1508 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1506 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: eeor 1741 cbvexv1 1798 cbvex2 1969 eean 1982 nfsbv 1998 nfeu1 2088 nfeuv 2095 nfel 2381 ceqsex2 2841 nfopab 4151 nfopab2 4153 cbvopab1 4156 cbvopab1s 4158 repizf2 4245 copsex2t 4330 copsex2g 4331 euotd 4340 onintrab2im 4609 mosubopt 4783 nfco 4886 dfdmf 4915 dfrnf 4964 nfdm 4967 fv3 5649 nfoprab2 6053 nfoprab3 6054 nfoprab 6055 cbvoprab1 6075 cbvoprab2 6076 cbvoprab3 6079 cnvoprab 6378 ac6sfi 7056 cc3 7450 nfsum1 11862 nfsum 11863 fsum2dlemstep 11940 nfcprod1 12060 nfcprod 12061 fprod2dlemstep 12128 lss1d 14341 |
| Copyright terms: Public domain | W3C validator |