![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfex | GIF version |
Description: If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
Ref | Expression |
---|---|
nfex.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfex.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfri 1530 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | 2 | hbex 1647 | . 2 ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
4 | 3 | nfi 1473 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1471 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: eeor 1706 cbvexv1 1763 cbvex2 1934 eean 1947 nfsbv 1963 nfeu1 2053 nfeuv 2060 nfel 2345 ceqsex2 2800 nfopab 4097 nfopab2 4099 cbvopab1 4102 cbvopab1s 4104 repizf2 4191 copsex2t 4274 copsex2g 4275 euotd 4283 onintrab2im 4550 mosubopt 4724 nfco 4827 dfdmf 4855 dfrnf 4903 nfdm 4906 fv3 5577 nfoprab2 5968 nfoprab3 5969 nfoprab 5970 cbvoprab1 5990 cbvoprab2 5991 cbvoprab3 5994 cnvoprab 6287 ac6sfi 6954 cc3 7328 nfsum1 11499 nfsum 11500 fsum2dlemstep 11577 nfcprod1 11697 nfcprod 11698 fprod2dlemstep 11765 lss1d 13879 |
Copyright terms: Public domain | W3C validator |