| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfex | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
| Ref | Expression |
|---|---|
| nfex.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfex.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1542 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | 2 | hbex 1659 | . 2 ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
| 4 | 3 | nfi 1485 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1483 ∃wex 1515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 |
| This theorem is referenced by: eeor 1718 cbvexv1 1775 cbvex2 1946 eean 1959 nfsbv 1975 nfeu1 2065 nfeuv 2072 nfel 2357 ceqsex2 2813 nfopab 4112 nfopab2 4114 cbvopab1 4117 cbvopab1s 4119 repizf2 4206 copsex2t 4289 copsex2g 4290 euotd 4299 onintrab2im 4566 mosubopt 4740 nfco 4843 dfdmf 4871 dfrnf 4919 nfdm 4922 fv3 5599 nfoprab2 5995 nfoprab3 5996 nfoprab 5997 cbvoprab1 6017 cbvoprab2 6018 cbvoprab3 6021 cnvoprab 6320 ac6sfi 6995 cc3 7380 nfsum1 11667 nfsum 11668 fsum2dlemstep 11745 nfcprod1 11865 nfcprod 11866 fprod2dlemstep 11933 lss1d 14145 |
| Copyright terms: Public domain | W3C validator |