![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfex | GIF version |
Description: If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
Ref | Expression |
---|---|
nfex.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfex.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfri 1519 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | 2 | hbex 1636 | . 2 ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
4 | 3 | nfi 1462 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1460 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: eeor 1695 cbvexv1 1752 cbvex2 1922 eean 1931 nfsbv 1947 nfeu1 2037 nfeuv 2044 nfel 2328 ceqsex2 2777 nfopab 4071 nfopab2 4073 cbvopab1 4076 cbvopab1s 4078 repizf2 4162 copsex2t 4245 copsex2g 4246 euotd 4254 onintrab2im 4517 mosubopt 4691 nfco 4792 dfdmf 4820 dfrnf 4868 nfdm 4871 fv3 5538 nfoprab2 5924 nfoprab3 5925 nfoprab 5926 cbvoprab1 5946 cbvoprab2 5947 cbvoprab3 5950 cnvoprab 6234 ac6sfi 6897 cc3 7266 nfsum1 11363 nfsum 11364 fsum2dlemstep 11441 nfcprod1 11561 nfcprod 11562 fprod2dlemstep 11629 |
Copyright terms: Public domain | W3C validator |