ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfex GIF version

Theorem nfex 1637
Description: If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
Hypothesis
Ref Expression
nfex.1 𝑥𝜑
Assertion
Ref Expression
nfex 𝑥𝑦𝜑

Proof of Theorem nfex
StepHypRef Expression
1 nfex.1 . . . 4 𝑥𝜑
21nfri 1519 . . 3 (𝜑 → ∀𝑥𝜑)
32hbex 1636 . 2 (∃𝑦𝜑 → ∀𝑥𝑦𝜑)
43nfi 1462 1 𝑥𝑦𝜑
Colors of variables: wff set class
Syntax hints:  wnf 1460  wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510
This theorem depends on definitions:  df-bi 117  df-nf 1461
This theorem is referenced by:  eeor  1695  cbvexv1  1752  cbvex2  1922  eean  1931  nfsbv  1947  nfeu1  2037  nfeuv  2044  nfel  2328  ceqsex2  2777  nfopab  4071  nfopab2  4073  cbvopab1  4076  cbvopab1s  4078  repizf2  4162  copsex2t  4245  copsex2g  4246  euotd  4254  onintrab2im  4517  mosubopt  4691  nfco  4792  dfdmf  4820  dfrnf  4868  nfdm  4871  fv3  5538  nfoprab2  5924  nfoprab3  5925  nfoprab  5926  cbvoprab1  5946  cbvoprab2  5947  cbvoprab3  5950  cnvoprab  6234  ac6sfi  6897  cc3  7266  nfsum1  11363  nfsum  11364  fsum2dlemstep  11441  nfcprod1  11561  nfcprod  11562  fprod2dlemstep  11629
  Copyright terms: Public domain W3C validator