Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfex | GIF version |
Description: If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
Ref | Expression |
---|---|
nfex.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfex.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfri 1499 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | 2 | hbex 1616 | . 2 ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
4 | 3 | nfi 1442 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1440 ∃wex 1472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 |
This theorem depends on definitions: df-bi 116 df-nf 1441 |
This theorem is referenced by: eeor 1675 cbvexv1 1732 cbvex2 1902 eean 1911 nfsbv 1927 nfeu1 2017 nfeuv 2024 nfel 2308 ceqsex2 2752 nfopab 4032 nfopab2 4034 cbvopab1 4037 cbvopab1s 4039 repizf2 4123 copsex2t 4205 copsex2g 4206 euotd 4214 onintrab2im 4477 mosubopt 4651 nfco 4751 dfdmf 4779 dfrnf 4827 nfdm 4830 fv3 5491 nfoprab2 5871 nfoprab3 5872 nfoprab 5873 cbvoprab1 5893 cbvoprab2 5894 cbvoprab3 5897 cnvoprab 6181 ac6sfi 6843 cc3 7188 nfsum1 11253 nfsum 11254 fsum2dlemstep 11331 nfcprod1 11451 nfcprod 11452 fprod2dlemstep 11519 |
Copyright terms: Public domain | W3C validator |