ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfex GIF version

Theorem nfex 1660
Description: If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
Hypothesis
Ref Expression
nfex.1 𝑥𝜑
Assertion
Ref Expression
nfex 𝑥𝑦𝜑

Proof of Theorem nfex
StepHypRef Expression
1 nfex.1 . . . 4 𝑥𝜑
21nfri 1542 . . 3 (𝜑 → ∀𝑥𝜑)
32hbex 1659 . 2 (∃𝑦𝜑 → ∀𝑥𝑦𝜑)
43nfi 1485 1 𝑥𝑦𝜑
Colors of variables: wff set class
Syntax hints:  wnf 1483  wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533
This theorem depends on definitions:  df-bi 117  df-nf 1484
This theorem is referenced by:  eeor  1718  cbvexv1  1775  cbvex2  1946  eean  1959  nfsbv  1975  nfeu1  2065  nfeuv  2072  nfel  2357  ceqsex2  2813  nfopab  4112  nfopab2  4114  cbvopab1  4117  cbvopab1s  4119  repizf2  4206  copsex2t  4289  copsex2g  4290  euotd  4299  onintrab2im  4566  mosubopt  4740  nfco  4843  dfdmf  4871  dfrnf  4919  nfdm  4922  fv3  5599  nfoprab2  5995  nfoprab3  5996  nfoprab  5997  cbvoprab1  6017  cbvoprab2  6018  cbvoprab3  6021  cnvoprab  6320  ac6sfi  6995  cc3  7380  nfsum1  11667  nfsum  11668  fsum2dlemstep  11745  nfcprod1  11865  nfcprod  11866  fprod2dlemstep  11933  lss1d  14145
  Copyright terms: Public domain W3C validator