ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfex GIF version

Theorem nfex 1648
Description: If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
Hypothesis
Ref Expression
nfex.1 𝑥𝜑
Assertion
Ref Expression
nfex 𝑥𝑦𝜑

Proof of Theorem nfex
StepHypRef Expression
1 nfex.1 . . . 4 𝑥𝜑
21nfri 1530 . . 3 (𝜑 → ∀𝑥𝜑)
32hbex 1647 . 2 (∃𝑦𝜑 → ∀𝑥𝑦𝜑)
43nfi 1473 1 𝑥𝑦𝜑
Colors of variables: wff set class
Syntax hints:  wnf 1471  wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521
This theorem depends on definitions:  df-bi 117  df-nf 1472
This theorem is referenced by:  eeor  1706  cbvexv1  1763  cbvex2  1934  eean  1947  nfsbv  1963  nfeu1  2053  nfeuv  2060  nfel  2345  ceqsex2  2800  nfopab  4097  nfopab2  4099  cbvopab1  4102  cbvopab1s  4104  repizf2  4191  copsex2t  4274  copsex2g  4275  euotd  4283  onintrab2im  4550  mosubopt  4724  nfco  4827  dfdmf  4855  dfrnf  4903  nfdm  4906  fv3  5577  nfoprab2  5968  nfoprab3  5969  nfoprab  5970  cbvoprab1  5990  cbvoprab2  5991  cbvoprab3  5994  cnvoprab  6287  ac6sfi  6954  cc3  7328  nfsum1  11499  nfsum  11500  fsum2dlemstep  11577  nfcprod1  11697  nfcprod  11698  fprod2dlemstep  11765  lss1d  13879
  Copyright terms: Public domain W3C validator