Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfex | GIF version |
Description: If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
Ref | Expression |
---|---|
nfex.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfex.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfri 1507 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | 2 | hbex 1624 | . 2 ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
4 | 3 | nfi 1450 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1448 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: eeor 1683 cbvexv1 1740 cbvex2 1910 eean 1919 nfsbv 1935 nfeu1 2025 nfeuv 2032 nfel 2317 ceqsex2 2766 nfopab 4050 nfopab2 4052 cbvopab1 4055 cbvopab1s 4057 repizf2 4141 copsex2t 4223 copsex2g 4224 euotd 4232 onintrab2im 4495 mosubopt 4669 nfco 4769 dfdmf 4797 dfrnf 4845 nfdm 4848 fv3 5509 nfoprab2 5892 nfoprab3 5893 nfoprab 5894 cbvoprab1 5914 cbvoprab2 5915 cbvoprab3 5918 cnvoprab 6202 ac6sfi 6864 cc3 7209 nfsum1 11297 nfsum 11298 fsum2dlemstep 11375 nfcprod1 11495 nfcprod 11496 fprod2dlemstep 11563 |
Copyright terms: Public domain | W3C validator |