Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.23vv | GIF version |
Description: Theorem 19.23 of [Margaris] p. 90 extended to two variables. (Contributed by NM, 10-Aug-2004.) |
Ref | Expression |
---|---|
19.23vv | ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥∃𝑦𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.23v 1871 | . . 3 ⊢ (∀𝑦(𝜑 → 𝜓) ↔ (∃𝑦𝜑 → 𝜓)) | |
2 | 1 | albii 1458 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑥(∃𝑦𝜑 → 𝜓)) |
3 | 19.23v 1871 | . 2 ⊢ (∀𝑥(∃𝑦𝜑 → 𝜓) ↔ (∃𝑥∃𝑦𝜑 → 𝜓)) | |
4 | 2, 3 | bitri 183 | 1 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥∃𝑦𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie2 1482 ax-17 1514 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ssrel 4692 ssrelrel 4704 raliunxp 4745 |
Copyright terms: Public domain | W3C validator |