Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.23v | GIF version |
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
19.23v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1519 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | 1 | 19.23h 1491 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1442 ax-ie2 1487 ax-17 1519 |
This theorem is referenced by: 19.23vv 1877 2eu4 2112 gencbval 2778 euind 2917 reuind 2935 unissb 3826 disjnim 3980 dftr2 4089 ssrelrel 4711 cotr 4992 dffun2 5208 fununi 5266 dff13 5747 acexmidlem2 5850 |
Copyright terms: Public domain | W3C validator |