ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23v GIF version

Theorem 19.23v 1907
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
19.23v (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.23v
StepHypRef Expression
1 ax-17 1550 . 2 (𝜓 → ∀𝑥𝜓)
2119.23h 1522 1 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-gen 1473  ax-ie2 1518  ax-17 1550
This theorem is referenced by:  19.23vv  1908  2eu4  2148  gencbval  2823  euind  2964  reuind  2982  snssb  3772  unissb  3886  disjnim  4041  dftr2  4152  ssrelrel  4783  cotr  5073  dffun2  5290  fununi  5351  dff13  5850  acexmidlem2  5954
  Copyright terms: Public domain W3C validator