ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23v GIF version

Theorem 19.23v 1871
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
19.23v (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.23v
StepHypRef Expression
1 ax-17 1514 . 2 (𝜓 → ∀𝑥𝜓)
2119.23h 1486 1 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-gen 1437  ax-ie2 1482  ax-17 1514
This theorem is referenced by:  19.23vv  1872  2eu4  2107  gencbval  2774  euind  2913  reuind  2931  unissb  3819  disjnim  3973  dftr2  4082  ssrelrel  4704  cotr  4985  dffun2  5198  fununi  5256  dff13  5736  acexmidlem2  5839
  Copyright terms: Public domain W3C validator