ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23v GIF version

Theorem 19.23v 1929
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
19.23v (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.23v
StepHypRef Expression
1 ax-17 1572 . 2 (𝜓 → ∀𝑥𝜓)
2119.23h 1544 1 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393  wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-gen 1495  ax-ie2 1540  ax-17 1572
This theorem is referenced by:  19.23vv  1930  2eu4  2171  gencbval  2849  euind  2990  reuind  3008  snssb  3800  unissb  3917  disjnim  4072  dftr2  4183  ssrelrel  4818  cotr  5109  dffun2  5327  fununi  5388  dff13  5891  acexmidlem2  5997
  Copyright terms: Public domain W3C validator