| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.23v | GIF version | ||
| Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.) |
| Ref | Expression |
|---|---|
| 19.23v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1572 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | 1 | 19.23h 1544 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-gen 1495 ax-ie2 1540 ax-17 1572 |
| This theorem is referenced by: 19.23vv 1930 2eu4 2171 gencbval 2849 euind 2990 reuind 3008 snssb 3800 unissb 3917 disjnim 4072 dftr2 4183 ssrelrel 4818 cotr 5109 dffun2 5327 fununi 5388 dff13 5891 acexmidlem2 5997 |
| Copyright terms: Public domain | W3C validator |