ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23v GIF version

Theorem 19.23v 1894
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
19.23v (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.23v
StepHypRef Expression
1 ax-17 1537 . 2 (𝜓 → ∀𝑥𝜓)
2119.23h 1509 1 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362  wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-gen 1460  ax-ie2 1505  ax-17 1537
This theorem is referenced by:  19.23vv  1895  2eu4  2135  gencbval  2808  euind  2947  reuind  2965  snssb  3751  unissb  3865  disjnim  4020  dftr2  4129  ssrelrel  4759  cotr  5047  dffun2  5264  fununi  5322  dff13  5811  acexmidlem2  5915
  Copyright terms: Public domain W3C validator