| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.23v | GIF version | ||
| Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.) |
| Ref | Expression |
|---|---|
| 19.23v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1550 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | 1 | 19.23h 1522 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-gen 1473 ax-ie2 1518 ax-17 1550 |
| This theorem is referenced by: 19.23vv 1908 2eu4 2148 gencbval 2823 euind 2964 reuind 2982 snssb 3772 unissb 3886 disjnim 4041 dftr2 4152 ssrelrel 4783 cotr 5073 dffun2 5290 fununi 5351 dff13 5850 acexmidlem2 5954 |
| Copyright terms: Public domain | W3C validator |