ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23v GIF version

Theorem 19.23v 1897
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
19.23v (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.23v
StepHypRef Expression
1 ax-17 1540 . 2 (𝜓 → ∀𝑥𝜓)
2119.23h 1512 1 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362  wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-gen 1463  ax-ie2 1508  ax-17 1540
This theorem is referenced by:  19.23vv  1898  2eu4  2138  gencbval  2812  euind  2951  reuind  2969  snssb  3755  unissb  3869  disjnim  4024  dftr2  4133  ssrelrel  4763  cotr  5051  dffun2  5268  fununi  5326  dff13  5815  acexmidlem2  5919
  Copyright terms: Public domain W3C validator