![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.23v | GIF version |
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
19.23v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1526 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | 1 | 19.23h 1498 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1449 ax-ie2 1494 ax-17 1526 |
This theorem is referenced by: 19.23vv 1884 2eu4 2119 gencbval 2786 euind 2925 reuind 2943 snssb 3726 unissb 3840 disjnim 3995 dftr2 4104 ssrelrel 4727 cotr 5011 dffun2 5227 fununi 5285 dff13 5769 acexmidlem2 5872 |
Copyright terms: Public domain | W3C validator |