ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23v GIF version

Theorem 19.23v 1905
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
19.23v (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.23v
StepHypRef Expression
1 ax-17 1548 . 2 (𝜓 → ∀𝑥𝜓)
2119.23h 1520 1 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1370  wex 1514
This theorem was proved from axioms:  ax-mp 5  ax-gen 1471  ax-ie2 1516  ax-17 1548
This theorem is referenced by:  19.23vv  1906  2eu4  2146  gencbval  2820  euind  2959  reuind  2977  snssb  3765  unissb  3879  disjnim  4034  dftr2  4143  ssrelrel  4773  cotr  5061  dffun2  5278  fununi  5336  dff13  5827  acexmidlem2  5931
  Copyright terms: Public domain W3C validator