ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23v GIF version

Theorem 19.23v 1894
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
19.23v (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.23v
StepHypRef Expression
1 ax-17 1537 . 2 (𝜓 → ∀𝑥𝜓)
2119.23h 1509 1 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362  wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-gen 1460  ax-ie2 1505  ax-17 1537
This theorem is referenced by:  19.23vv  1895  2eu4  2135  gencbval  2809  euind  2948  reuind  2966  snssb  3752  unissb  3866  disjnim  4021  dftr2  4130  ssrelrel  4760  cotr  5048  dffun2  5265  fununi  5323  dff13  5812  acexmidlem2  5916
  Copyright terms: Public domain W3C validator