![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.23v | GIF version |
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
19.23v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1537 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | 1 | 19.23h 1509 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1460 ax-ie2 1505 ax-17 1537 |
This theorem is referenced by: 19.23vv 1895 2eu4 2135 gencbval 2808 euind 2947 reuind 2965 snssb 3751 unissb 3865 disjnim 4020 dftr2 4129 ssrelrel 4759 cotr 5047 dffun2 5264 fununi 5322 dff13 5811 acexmidlem2 5915 |
Copyright terms: Public domain | W3C validator |