ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23v GIF version

Theorem 19.23v 1883
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
19.23v (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.23v
StepHypRef Expression
1 ax-17 1526 . 2 (𝜓 → ∀𝑥𝜓)
2119.23h 1498 1 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351  wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-gen 1449  ax-ie2 1494  ax-17 1526
This theorem is referenced by:  19.23vv  1884  2eu4  2119  gencbval  2786  euind  2925  reuind  2943  snssb  3726  unissb  3840  disjnim  3995  dftr2  4104  ssrelrel  4727  cotr  5011  dffun2  5227  fununi  5285  dff13  5769  acexmidlem2  5872
  Copyright terms: Public domain W3C validator