ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23v GIF version

Theorem 19.23v 1863
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
19.23v (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.23v
StepHypRef Expression
1 ax-17 1506 . 2 (𝜓 → ∀𝑥𝜓)
2119.23h 1478 1 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1333  wex 1472
This theorem was proved from axioms:  ax-mp 5  ax-gen 1429  ax-ie2 1474  ax-17 1506
This theorem is referenced by:  19.23vv  1864  2eu4  2099  gencbval  2760  euind  2899  reuind  2917  unissb  3802  disjnim  3956  dftr2  4064  ssrelrel  4685  cotr  4966  dffun2  5179  fununi  5237  dff13  5715  acexmidlem2  5818
  Copyright terms: Public domain W3C validator