![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.23v | GIF version |
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
19.23v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1537 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | 1 | 19.23h 1509 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1460 ax-ie2 1505 ax-17 1537 |
This theorem is referenced by: 19.23vv 1895 2eu4 2131 gencbval 2800 euind 2939 reuind 2957 snssb 3740 unissb 3854 disjnim 4009 dftr2 4118 ssrelrel 4741 cotr 5025 dffun2 5241 fununi 5299 dff13 5785 acexmidlem2 5888 |
Copyright terms: Public domain | W3C validator |