Proof of Theorem rexxfrd
| Step | Hyp | Ref
 | Expression | 
| 1 |   | nfv 1542 | 
. . . . 5
⊢
Ⅎ𝑦𝜓 | 
| 2 | 1 | 19.3 1568 | 
. . . 4
⊢
(∀𝑦𝜓 ↔ 𝜓) | 
| 3 |   | ralxfrd.2 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | 
| 4 |   | df-rex 2481 | 
. . . . . . . 8
⊢
(∃𝑦 ∈
𝐶 𝑥 = 𝐴 ↔ ∃𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) | 
| 5 |   | 19.29 1634 | 
. . . . . . . . . 10
⊢
((∀𝑦𝜓 ∧ ∃𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) → ∃𝑦(𝜓 ∧ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴))) | 
| 6 |   | an12 561 | 
. . . . . . . . . . 11
⊢ ((𝜓 ∧ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) ↔ (𝑦 ∈ 𝐶 ∧ (𝜓 ∧ 𝑥 = 𝐴))) | 
| 7 | 6 | exbii 1619 | 
. . . . . . . . . 10
⊢
(∃𝑦(𝜓 ∧ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) ↔ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝜓 ∧ 𝑥 = 𝐴))) | 
| 8 | 5, 7 | sylib 122 | 
. . . . . . . . 9
⊢
((∀𝑦𝜓 ∧ ∃𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) → ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝜓 ∧ 𝑥 = 𝐴))) | 
| 9 |   | df-rex 2481 | 
. . . . . . . . 9
⊢
(∃𝑦 ∈
𝐶 (𝜓 ∧ 𝑥 = 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝜓 ∧ 𝑥 = 𝐴))) | 
| 10 | 8, 9 | sylibr 134 | 
. . . . . . . 8
⊢
((∀𝑦𝜓 ∧ ∃𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) → ∃𝑦 ∈ 𝐶 (𝜓 ∧ 𝑥 = 𝐴)) | 
| 11 | 4, 10 | sylan2b 287 | 
. . . . . . 7
⊢
((∀𝑦𝜓 ∧ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) → ∃𝑦 ∈ 𝐶 (𝜓 ∧ 𝑥 = 𝐴)) | 
| 12 |   | ralxfrd.3 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | 
| 13 | 12 | biimpd 144 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) | 
| 14 | 13 | expimpd 363 | 
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝜓) → 𝜒)) | 
| 15 | 14 | ancomsd 269 | 
. . . . . . . 8
⊢ (𝜑 → ((𝜓 ∧ 𝑥 = 𝐴) → 𝜒)) | 
| 16 | 15 | reximdv 2598 | 
. . . . . . 7
⊢ (𝜑 → (∃𝑦 ∈ 𝐶 (𝜓 ∧ 𝑥 = 𝐴) → ∃𝑦 ∈ 𝐶 𝜒)) | 
| 17 | 11, 16 | syl5 32 | 
. . . . . 6
⊢ (𝜑 → ((∀𝑦𝜓 ∧ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) → ∃𝑦 ∈ 𝐶 𝜒)) | 
| 18 | 17 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∀𝑦𝜓 ∧ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) → ∃𝑦 ∈ 𝐶 𝜒)) | 
| 19 | 3, 18 | mpan2d 428 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∀𝑦𝜓 → ∃𝑦 ∈ 𝐶 𝜒)) | 
| 20 | 2, 19 | biimtrrid 153 | 
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 → ∃𝑦 ∈ 𝐶 𝜒)) | 
| 21 | 20 | rexlimdva 2614 | 
. 2
⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 → ∃𝑦 ∈ 𝐶 𝜒)) | 
| 22 |   | ralxfrd.1 | 
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) | 
| 23 | 12 | adantlr 477 | 
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | 
| 24 | 22, 23 | rspcedv 2872 | 
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) | 
| 25 | 24 | rexlimdva 2614 | 
. 2
⊢ (𝜑 → (∃𝑦 ∈ 𝐶 𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) | 
| 26 | 21, 25 | impbid 129 | 
1
⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) |