ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexxfrd GIF version

Theorem rexxfrd 4551
Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by FL, 10-Apr-2007.) (Revised by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
ralxfrd.1 ((𝜑𝑦𝐶) → 𝐴𝐵)
ralxfrd.2 ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
ralxfrd.3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rexxfrd (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑦𝐶 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)   𝐶(𝑦)

Proof of Theorem rexxfrd
StepHypRef Expression
1 nfv 1574 . . . . 5 𝑦𝜓
2119.3 1600 . . . 4 (∀𝑦𝜓𝜓)
3 ralxfrd.2 . . . . 5 ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
4 df-rex 2514 . . . . . . . 8 (∃𝑦𝐶 𝑥 = 𝐴 ↔ ∃𝑦(𝑦𝐶𝑥 = 𝐴))
5 19.29 1666 . . . . . . . . . 10 ((∀𝑦𝜓 ∧ ∃𝑦(𝑦𝐶𝑥 = 𝐴)) → ∃𝑦(𝜓 ∧ (𝑦𝐶𝑥 = 𝐴)))
6 an12 561 . . . . . . . . . . 11 ((𝜓 ∧ (𝑦𝐶𝑥 = 𝐴)) ↔ (𝑦𝐶 ∧ (𝜓𝑥 = 𝐴)))
76exbii 1651 . . . . . . . . . 10 (∃𝑦(𝜓 ∧ (𝑦𝐶𝑥 = 𝐴)) ↔ ∃𝑦(𝑦𝐶 ∧ (𝜓𝑥 = 𝐴)))
85, 7sylib 122 . . . . . . . . 9 ((∀𝑦𝜓 ∧ ∃𝑦(𝑦𝐶𝑥 = 𝐴)) → ∃𝑦(𝑦𝐶 ∧ (𝜓𝑥 = 𝐴)))
9 df-rex 2514 . . . . . . . . 9 (∃𝑦𝐶 (𝜓𝑥 = 𝐴) ↔ ∃𝑦(𝑦𝐶 ∧ (𝜓𝑥 = 𝐴)))
108, 9sylibr 134 . . . . . . . 8 ((∀𝑦𝜓 ∧ ∃𝑦(𝑦𝐶𝑥 = 𝐴)) → ∃𝑦𝐶 (𝜓𝑥 = 𝐴))
114, 10sylan2b 287 . . . . . . 7 ((∀𝑦𝜓 ∧ ∃𝑦𝐶 𝑥 = 𝐴) → ∃𝑦𝐶 (𝜓𝑥 = 𝐴))
12 ralxfrd.3 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
1312biimpd 144 . . . . . . . . . 10 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
1413expimpd 363 . . . . . . . . 9 (𝜑 → ((𝑥 = 𝐴𝜓) → 𝜒))
1514ancomsd 269 . . . . . . . 8 (𝜑 → ((𝜓𝑥 = 𝐴) → 𝜒))
1615reximdv 2631 . . . . . . 7 (𝜑 → (∃𝑦𝐶 (𝜓𝑥 = 𝐴) → ∃𝑦𝐶 𝜒))
1711, 16syl5 32 . . . . . 6 (𝜑 → ((∀𝑦𝜓 ∧ ∃𝑦𝐶 𝑥 = 𝐴) → ∃𝑦𝐶 𝜒))
1817adantr 276 . . . . 5 ((𝜑𝑥𝐵) → ((∀𝑦𝜓 ∧ ∃𝑦𝐶 𝑥 = 𝐴) → ∃𝑦𝐶 𝜒))
193, 18mpan2d 428 . . . 4 ((𝜑𝑥𝐵) → (∀𝑦𝜓 → ∃𝑦𝐶 𝜒))
202, 19biimtrrid 153 . . 3 ((𝜑𝑥𝐵) → (𝜓 → ∃𝑦𝐶 𝜒))
2120rexlimdva 2648 . 2 (𝜑 → (∃𝑥𝐵 𝜓 → ∃𝑦𝐶 𝜒))
22 ralxfrd.1 . . . 4 ((𝜑𝑦𝐶) → 𝐴𝐵)
2312adantlr 477 . . . 4 (((𝜑𝑦𝐶) ∧ 𝑥 = 𝐴) → (𝜓𝜒))
2422, 23rspcedv 2911 . . 3 ((𝜑𝑦𝐶) → (𝜒 → ∃𝑥𝐵 𝜓))
2524rexlimdva 2648 . 2 (𝜑 → (∃𝑦𝐶 𝜒 → ∃𝑥𝐵 𝜓))
2621, 25impbid 129 1 (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑦𝐶 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393   = wceq 1395  wex 1538  wcel 2200  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801
This theorem is referenced by:  rexxfr2d  4553  rexxfr  4556
  Copyright terms: Public domain W3C validator