Proof of Theorem rexxfrd
Step | Hyp | Ref
| Expression |
1 | | nfv 1516 |
. . . . 5
⊢
Ⅎ𝑦𝜓 |
2 | 1 | 19.3 1542 |
. . . 4
⊢
(∀𝑦𝜓 ↔ 𝜓) |
3 | | ralxfrd.2 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
4 | | df-rex 2450 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝐶 𝑥 = 𝐴 ↔ ∃𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) |
5 | | 19.29 1608 |
. . . . . . . . . 10
⊢
((∀𝑦𝜓 ∧ ∃𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) → ∃𝑦(𝜓 ∧ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴))) |
6 | | an12 551 |
. . . . . . . . . . 11
⊢ ((𝜓 ∧ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) ↔ (𝑦 ∈ 𝐶 ∧ (𝜓 ∧ 𝑥 = 𝐴))) |
7 | 6 | exbii 1593 |
. . . . . . . . . 10
⊢
(∃𝑦(𝜓 ∧ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) ↔ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝜓 ∧ 𝑥 = 𝐴))) |
8 | 5, 7 | sylib 121 |
. . . . . . . . 9
⊢
((∀𝑦𝜓 ∧ ∃𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) → ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝜓 ∧ 𝑥 = 𝐴))) |
9 | | df-rex 2450 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
𝐶 (𝜓 ∧ 𝑥 = 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝜓 ∧ 𝑥 = 𝐴))) |
10 | 8, 9 | sylibr 133 |
. . . . . . . 8
⊢
((∀𝑦𝜓 ∧ ∃𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) → ∃𝑦 ∈ 𝐶 (𝜓 ∧ 𝑥 = 𝐴)) |
11 | 4, 10 | sylan2b 285 |
. . . . . . 7
⊢
((∀𝑦𝜓 ∧ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) → ∃𝑦 ∈ 𝐶 (𝜓 ∧ 𝑥 = 𝐴)) |
12 | | ralxfrd.3 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
13 | 12 | biimpd 143 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
14 | 13 | expimpd 361 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝜓) → 𝜒)) |
15 | 14 | ancomsd 267 |
. . . . . . . 8
⊢ (𝜑 → ((𝜓 ∧ 𝑥 = 𝐴) → 𝜒)) |
16 | 15 | reximdv 2567 |
. . . . . . 7
⊢ (𝜑 → (∃𝑦 ∈ 𝐶 (𝜓 ∧ 𝑥 = 𝐴) → ∃𝑦 ∈ 𝐶 𝜒)) |
17 | 11, 16 | syl5 32 |
. . . . . 6
⊢ (𝜑 → ((∀𝑦𝜓 ∧ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) → ∃𝑦 ∈ 𝐶 𝜒)) |
18 | 17 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∀𝑦𝜓 ∧ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) → ∃𝑦 ∈ 𝐶 𝜒)) |
19 | 3, 18 | mpan2d 425 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∀𝑦𝜓 → ∃𝑦 ∈ 𝐶 𝜒)) |
20 | 2, 19 | syl5bir 152 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 → ∃𝑦 ∈ 𝐶 𝜒)) |
21 | 20 | rexlimdva 2583 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 → ∃𝑦 ∈ 𝐶 𝜒)) |
22 | | ralxfrd.1 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
23 | 12 | adantlr 469 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
24 | 22, 23 | rspcedv 2834 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
25 | 24 | rexlimdva 2583 |
. 2
⊢ (𝜑 → (∃𝑦 ∈ 𝐶 𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
26 | 21, 25 | impbid 128 |
1
⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) |