ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.32dc GIF version

Theorem 19.32dc 1667
Description: Theorem 19.32 of [Margaris] p. 90, where 𝜑 is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.)
Hypothesis
Ref Expression
19.32dc.1 𝑥𝜑
Assertion
Ref Expression
19.32dc (DECID 𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓)))

Proof of Theorem 19.32dc
StepHypRef Expression
1 19.32dc.1 . . . . 5 𝑥𝜑
21nfn 1646 . . . 4 𝑥 ¬ 𝜑
3219.21 1571 . . 3 (∀𝑥𝜑𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓))
43a1i 9 . 2 (DECID 𝜑 → (∀𝑥𝜑𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓)))
51nfdc 1647 . . 3 𝑥DECID 𝜑
6 dfordc 882 . . 3 (DECID 𝜑 → ((𝜑𝜓) ↔ (¬ 𝜑𝜓)))
75, 6albid 1603 . 2 (DECID 𝜑 → (∀𝑥(𝜑𝜓) ↔ ∀𝑥𝜑𝜓)))
8 dfordc 882 . 2 (DECID 𝜑 → ((𝜑 ∨ ∀𝑥𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓)))
94, 7, 83bitr4d 219 1 (DECID 𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wo 698  DECID wdc 824  wal 1341  wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-gen 1437  ax-ie2 1482  ax-4 1498  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-fal 1349  df-nf 1449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator