ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.32dc GIF version

Theorem 19.32dc 1679
Description: Theorem 19.32 of [Margaris] p. 90, where 𝜑 is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.)
Hypothesis
Ref Expression
19.32dc.1 𝑥𝜑
Assertion
Ref Expression
19.32dc (DECID 𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓)))

Proof of Theorem 19.32dc
StepHypRef Expression
1 19.32dc.1 . . . . 5 𝑥𝜑
21nfn 1658 . . . 4 𝑥 ¬ 𝜑
3219.21 1583 . . 3 (∀𝑥𝜑𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓))
43a1i 9 . 2 (DECID 𝜑 → (∀𝑥𝜑𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓)))
51nfdc 1659 . . 3 𝑥DECID 𝜑
6 dfordc 892 . . 3 (DECID 𝜑 → ((𝜑𝜓) ↔ (¬ 𝜑𝜓)))
75, 6albid 1615 . 2 (DECID 𝜑 → (∀𝑥(𝜑𝜓) ↔ ∀𝑥𝜑𝜓)))
8 dfordc 892 . 2 (DECID 𝜑 → ((𝜑 ∨ ∀𝑥𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓)))
94, 7, 83bitr4d 220 1 (DECID 𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 708  DECID wdc 834  wal 1351  wnf 1460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-gen 1449  ax-ie2 1494  ax-4 1510  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-dc 835  df-tru 1356  df-fal 1359  df-nf 1461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator