ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.32dc GIF version

Theorem 19.32dc 1672
Description: Theorem 19.32 of [Margaris] p. 90, where 𝜑 is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.)
Hypothesis
Ref Expression
19.32dc.1 𝑥𝜑
Assertion
Ref Expression
19.32dc (DECID 𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓)))

Proof of Theorem 19.32dc
StepHypRef Expression
1 19.32dc.1 . . . . 5 𝑥𝜑
21nfn 1651 . . . 4 𝑥 ¬ 𝜑
3219.21 1576 . . 3 (∀𝑥𝜑𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓))
43a1i 9 . 2 (DECID 𝜑 → (∀𝑥𝜑𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓)))
51nfdc 1652 . . 3 𝑥DECID 𝜑
6 dfordc 887 . . 3 (DECID 𝜑 → ((𝜑𝜓) ↔ (¬ 𝜑𝜓)))
75, 6albid 1608 . 2 (DECID 𝜑 → (∀𝑥(𝜑𝜓) ↔ ∀𝑥𝜑𝜓)))
8 dfordc 887 . 2 (DECID 𝜑 → ((𝜑 ∨ ∀𝑥𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓)))
94, 7, 83bitr4d 219 1 (DECID 𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wo 703  DECID wdc 829  wal 1346  wnf 1453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-gen 1442  ax-ie2 1487  ax-4 1503  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-dc 830  df-tru 1351  df-fal 1354  df-nf 1454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator