Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.32dc | GIF version |
Description: Theorem 19.32 of [Margaris] p. 90, where 𝜑 is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.) |
Ref | Expression |
---|---|
19.32dc.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
19.32dc | ⊢ (DECID 𝜑 → (∀𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.32dc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfn 1646 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜑 |
3 | 2 | 19.21 1571 | . . 3 ⊢ (∀𝑥(¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓)) |
4 | 3 | a1i 9 | . 2 ⊢ (DECID 𝜑 → (∀𝑥(¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓))) |
5 | 1 | nfdc 1647 | . . 3 ⊢ Ⅎ𝑥DECID 𝜑 |
6 | dfordc 882 | . . 3 ⊢ (DECID 𝜑 → ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓))) | |
7 | 5, 6 | albid 1603 | . 2 ⊢ (DECID 𝜑 → (∀𝑥(𝜑 ∨ 𝜓) ↔ ∀𝑥(¬ 𝜑 → 𝜓))) |
8 | dfordc 882 | . 2 ⊢ (DECID 𝜑 → ((𝜑 ∨ ∀𝑥𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓))) | |
9 | 4, 7, 8 | 3bitr4d 219 | 1 ⊢ (DECID 𝜑 → (∀𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∨ wo 698 DECID wdc 824 ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-gen 1437 ax-ie2 1482 ax-4 1498 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-fal 1349 df-nf 1449 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |