| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.32dc | GIF version | ||
| Description: Theorem 19.32 of [Margaris] p. 90, where 𝜑 is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.) |
| Ref | Expression |
|---|---|
| 19.32dc.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| 19.32dc | ⊢ (DECID 𝜑 → (∀𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.32dc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfn 1672 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| 3 | 2 | 19.21 1597 | . . 3 ⊢ (∀𝑥(¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓)) |
| 4 | 3 | a1i 9 | . 2 ⊢ (DECID 𝜑 → (∀𝑥(¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓))) |
| 5 | 1 | nfdc 1673 | . . 3 ⊢ Ⅎ𝑥DECID 𝜑 |
| 6 | dfordc 893 | . . 3 ⊢ (DECID 𝜑 → ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓))) | |
| 7 | 5, 6 | albid 1629 | . 2 ⊢ (DECID 𝜑 → (∀𝑥(𝜑 ∨ 𝜓) ↔ ∀𝑥(¬ 𝜑 → 𝜓))) |
| 8 | dfordc 893 | . 2 ⊢ (DECID 𝜑 → ((𝜑 ∨ ∀𝑥𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓))) | |
| 9 | 4, 7, 8 | 3bitr4d 220 | 1 ⊢ (DECID 𝜑 → (∀𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 709 DECID wdc 835 ∀wal 1362 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-4 1524 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-nf 1475 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |