Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.41h | GIF version |
Description: Theorem 19.41 of [Margaris] p. 90. New proofs should use 19.41 1674 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
19.41h.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
19.41h | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1619 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
2 | 19.41h.1 | . . . . 5 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | id 19 | . . . . 5 ⊢ (𝜓 → 𝜓) | |
4 | 2, 3 | exlimih 1581 | . . . 4 ⊢ (∃𝑥𝜓 → 𝜓) |
5 | 4 | anim2i 340 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
6 | 1, 5 | syl 14 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
7 | pm3.21 262 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
8 | 2, 7 | eximdh 1599 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
9 | 8 | impcom 124 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
10 | 6, 9 | impbii 125 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.42h 1675 sbh 1764 sbidm 1839 19.41v 1890 2exeu 2106 |
Copyright terms: Public domain | W3C validator |