ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim1i GIF version

Theorem orim1i 755
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
Hypothesis
Ref Expression
orim1i.1 (𝜑𝜓)
Assertion
Ref Expression
orim1i ((𝜑𝜒) → (𝜓𝜒))

Proof of Theorem orim1i
StepHypRef Expression
1 orim1i.1 . 2 (𝜑𝜓)
2 id 19 . 2 (𝜒𝜒)
31, 2orim12i 754 1 ((𝜑𝜒) → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  19.34  1677  dveeq2or  1809  sbequilem  1831  sbequi  1832  dvelimALT  2003  dvelimfv  2004  dvelimor  2011  r19.45av  2630  acexmidlemcase  5845  omniwomnimkv  7139  nnm1nn0  9163  prmdc  12071  triap  13983
  Copyright terms: Public domain W3C validator