| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orim1i | GIF version | ||
| Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| orim1i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| orim1i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
| 3 | 1, 2 | orim12i 761 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.34 1708 dveeq2or 1840 sbequilem 1862 sbequi 1863 dvelimALT 2039 dvelimfv 2040 dvelimor 2047 r19.45av 2667 acexmidlemcase 5949 omniwomnimkv 7281 nnm1nn0 9349 prmdc 12502 pcadd2 12714 triap 16083 |
| Copyright terms: Public domain | W3C validator |