Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtocl2 | GIF version |
Description: Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
vtocl2.1 | ⊢ 𝐴 ∈ V |
vtocl2.2 | ⊢ 𝐵 ∈ V |
vtocl2.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
vtocl2.4 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl2 | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocl2.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
2 | 1 | isseti 2738 | . . . . 5 ⊢ ∃𝑥 𝑥 = 𝐴 |
3 | vtocl2.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
4 | 3 | isseti 2738 | . . . . 5 ⊢ ∃𝑦 𝑦 = 𝐵 |
5 | eeanv 1925 | . . . . . 6 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) | |
6 | vtocl2.3 | . . . . . . . 8 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
7 | 6 | biimpd 143 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 → 𝜓)) |
8 | 7 | 2eximi 1594 | . . . . . 6 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥∃𝑦(𝜑 → 𝜓)) |
9 | 5, 8 | sylbir 134 | . . . . 5 ⊢ ((∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → ∃𝑥∃𝑦(𝜑 → 𝜓)) |
10 | 2, 4, 9 | mp2an 424 | . . . 4 ⊢ ∃𝑥∃𝑦(𝜑 → 𝜓) |
11 | nfv 1521 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
12 | 11 | 19.36-1 1666 | . . . 4 ⊢ (∃𝑦(𝜑 → 𝜓) → (∀𝑦𝜑 → 𝜓)) |
13 | 10, 12 | eximii 1595 | . . 3 ⊢ ∃𝑥(∀𝑦𝜑 → 𝜓) |
14 | 13 | 19.36aiv 1894 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → 𝜓) |
15 | vtocl2.4 | . . 3 ⊢ 𝜑 | |
16 | 15 | ax-gen 1442 | . 2 ⊢ ∀𝑦𝜑 |
17 | 14, 16 | mpg 1444 | 1 ⊢ 𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1346 = wceq 1348 ∃wex 1485 ∈ wcel 2141 Vcvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: undifexmid 4179 caovord 6024 ctssexmid 7126 |
Copyright terms: Public domain | W3C validator |