Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtocl2 | GIF version |
Description: Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
vtocl2.1 | ⊢ 𝐴 ∈ V |
vtocl2.2 | ⊢ 𝐵 ∈ V |
vtocl2.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
vtocl2.4 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl2 | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocl2.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
2 | 1 | isseti 2734 | . . . . 5 ⊢ ∃𝑥 𝑥 = 𝐴 |
3 | vtocl2.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
4 | 3 | isseti 2734 | . . . . 5 ⊢ ∃𝑦 𝑦 = 𝐵 |
5 | eeanv 1920 | . . . . . 6 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) | |
6 | vtocl2.3 | . . . . . . . 8 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
7 | 6 | biimpd 143 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 → 𝜓)) |
8 | 7 | 2eximi 1589 | . . . . . 6 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥∃𝑦(𝜑 → 𝜓)) |
9 | 5, 8 | sylbir 134 | . . . . 5 ⊢ ((∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → ∃𝑥∃𝑦(𝜑 → 𝜓)) |
10 | 2, 4, 9 | mp2an 423 | . . . 4 ⊢ ∃𝑥∃𝑦(𝜑 → 𝜓) |
11 | nfv 1516 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
12 | 11 | 19.36-1 1661 | . . . 4 ⊢ (∃𝑦(𝜑 → 𝜓) → (∀𝑦𝜑 → 𝜓)) |
13 | 10, 12 | eximii 1590 | . . 3 ⊢ ∃𝑥(∀𝑦𝜑 → 𝜓) |
14 | 13 | 19.36aiv 1889 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → 𝜓) |
15 | vtocl2.4 | . . 3 ⊢ 𝜑 | |
16 | 15 | ax-gen 1437 | . 2 ⊢ ∀𝑦𝜑 |
17 | 14, 16 | mpg 1439 | 1 ⊢ 𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: undifexmid 4172 caovord 6013 ctssexmid 7114 |
Copyright terms: Public domain | W3C validator |