| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtocl2 | GIF version | ||
| Description: Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| vtocl2.1 | ⊢ 𝐴 ∈ V |
| vtocl2.2 | ⊢ 𝐵 ∈ V |
| vtocl2.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| vtocl2.4 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl2 | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl2.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 2 | 1 | isseti 2771 | . . . . 5 ⊢ ∃𝑥 𝑥 = 𝐴 |
| 3 | vtocl2.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 4 | 3 | isseti 2771 | . . . . 5 ⊢ ∃𝑦 𝑦 = 𝐵 |
| 5 | eeanv 1951 | . . . . . 6 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) | |
| 6 | vtocl2.3 | . . . . . . . 8 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 7 | 6 | biimpd 144 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 → 𝜓)) |
| 8 | 7 | 2eximi 1615 | . . . . . 6 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥∃𝑦(𝜑 → 𝜓)) |
| 9 | 5, 8 | sylbir 135 | . . . . 5 ⊢ ((∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → ∃𝑥∃𝑦(𝜑 → 𝜓)) |
| 10 | 2, 4, 9 | mp2an 426 | . . . 4 ⊢ ∃𝑥∃𝑦(𝜑 → 𝜓) |
| 11 | nfv 1542 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
| 12 | 11 | 19.36-1 1687 | . . . 4 ⊢ (∃𝑦(𝜑 → 𝜓) → (∀𝑦𝜑 → 𝜓)) |
| 13 | 10, 12 | eximii 1616 | . . 3 ⊢ ∃𝑥(∀𝑦𝜑 → 𝜓) |
| 14 | 13 | 19.36aiv 1916 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → 𝜓) |
| 15 | vtocl2.4 | . . 3 ⊢ 𝜑 | |
| 16 | 15 | ax-gen 1463 | . 2 ⊢ ∀𝑦𝜑 |
| 17 | 14, 16 | mpg 1465 | 1 ⊢ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: undifexmid 4227 caovord 6099 ctssexmid 7225 |
| Copyright terms: Public domain | W3C validator |