ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl2 GIF version

Theorem vtocl2 2744
Description: Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypotheses
Ref Expression
vtocl2.1 𝐴 ∈ V
vtocl2.2 𝐵 ∈ V
vtocl2.3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
vtocl2.4 𝜑
Assertion
Ref Expression
vtocl2 𝜓
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem vtocl2
StepHypRef Expression
1 vtocl2.1 . . . . . 6 𝐴 ∈ V
21isseti 2697 . . . . 5 𝑥 𝑥 = 𝐴
3 vtocl2.2 . . . . . 6 𝐵 ∈ V
43isseti 2697 . . . . 5 𝑦 𝑦 = 𝐵
5 eeanv 1905 . . . . . 6 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
6 vtocl2.3 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
76biimpd 143 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
872eximi 1581 . . . . . 6 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → ∃𝑥𝑦(𝜑𝜓))
95, 8sylbir 134 . . . . 5 ((∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → ∃𝑥𝑦(𝜑𝜓))
102, 4, 9mp2an 423 . . . 4 𝑥𝑦(𝜑𝜓)
11 nfv 1509 . . . . 5 𝑦𝜓
121119.36-1 1652 . . . 4 (∃𝑦(𝜑𝜓) → (∀𝑦𝜑𝜓))
1310, 12eximii 1582 . . 3 𝑥(∀𝑦𝜑𝜓)
141319.36aiv 1874 . 2 (∀𝑥𝑦𝜑𝜓)
15 vtocl2.4 . . 3 𝜑
1615ax-gen 1426 . 2 𝑦𝜑
1714, 16mpg 1428 1 𝜓
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1330   = wceq 1332  wex 1469  wcel 1481  Vcvv 2689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-v 2691
This theorem is referenced by:  undifexmid  4124  caovord  5949  ctssexmid  7031
  Copyright terms: Public domain W3C validator