ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl2 GIF version

Theorem vtocl2 2794
Description: Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypotheses
Ref Expression
vtocl2.1 𝐴 ∈ V
vtocl2.2 𝐵 ∈ V
vtocl2.3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
vtocl2.4 𝜑
Assertion
Ref Expression
vtocl2 𝜓
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem vtocl2
StepHypRef Expression
1 vtocl2.1 . . . . . 6 𝐴 ∈ V
21isseti 2747 . . . . 5 𝑥 𝑥 = 𝐴
3 vtocl2.2 . . . . . 6 𝐵 ∈ V
43isseti 2747 . . . . 5 𝑦 𝑦 = 𝐵
5 eeanv 1932 . . . . . 6 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
6 vtocl2.3 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
76biimpd 144 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
872eximi 1601 . . . . . 6 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → ∃𝑥𝑦(𝜑𝜓))
95, 8sylbir 135 . . . . 5 ((∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → ∃𝑥𝑦(𝜑𝜓))
102, 4, 9mp2an 426 . . . 4 𝑥𝑦(𝜑𝜓)
11 nfv 1528 . . . . 5 𝑦𝜓
121119.36-1 1673 . . . 4 (∃𝑦(𝜑𝜓) → (∀𝑦𝜑𝜓))
1310, 12eximii 1602 . . 3 𝑥(∀𝑦𝜑𝜓)
141319.36aiv 1901 . 2 (∀𝑥𝑦𝜑𝜓)
15 vtocl2.4 . . 3 𝜑
1615ax-gen 1449 . 2 𝑦𝜑
1714, 16mpg 1451 1 𝜓
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351   = wceq 1353  wex 1492  wcel 2148  Vcvv 2739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2741
This theorem is referenced by:  undifexmid  4195  caovord  6048  ctssexmid  7150
  Copyright terms: Public domain W3C validator