Proof of Theorem ceqsex8v
| Step | Hyp | Ref
 | Expression | 
| 1 |   | 19.42vvvv 1928 | 
. . . . 5
⊢
(∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 2 |   | 3anass 984 | 
. . . . . . . 8
⊢ ((((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑))) | 
| 3 |   | df-3an 982 | 
. . . . . . . . 9
⊢ (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑) ↔ (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑)) | 
| 4 | 3 | anbi2i 457 | 
. . . . . . . 8
⊢ ((((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑))) | 
| 5 | 2, 4 | bitr4i 187 | 
. . . . . . 7
⊢ ((((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 6 | 5 | 2exbii 1620 | 
. . . . . 6
⊢
(∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ ∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 7 | 6 | 2exbii 1620 | 
. . . . 5
⊢
(∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ ∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 8 |   | df-3an 982 | 
. . . . 5
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 9 | 1, 7, 8 | 3bitr4i 212 | 
. . . 4
⊢
(∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 10 | 9 | 2exbii 1620 | 
. . 3
⊢
(∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ ∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 11 | 10 | 2exbii 1620 | 
. 2
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 12 |   | ceqsex8v.1 | 
. . . 4
⊢ 𝐴 ∈ V | 
| 13 |   | ceqsex8v.2 | 
. . . 4
⊢ 𝐵 ∈ V | 
| 14 |   | ceqsex8v.3 | 
. . . 4
⊢ 𝐶 ∈ V | 
| 15 |   | ceqsex8v.4 | 
. . . 4
⊢ 𝐷 ∈ V | 
| 16 |   | ceqsex8v.9 | 
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| 17 | 16 | 3anbi3d 1329 | 
. . . . 5
⊢ (𝑥 = 𝐴 → (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑) ↔ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜓))) | 
| 18 | 17 | 4exbidv 1884 | 
. . . 4
⊢ (𝑥 = 𝐴 → (∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑) ↔ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜓))) | 
| 19 |   | ceqsex8v.10 | 
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | 
| 20 | 19 | 3anbi3d 1329 | 
. . . . 5
⊢ (𝑦 = 𝐵 → (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜓) ↔ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜒))) | 
| 21 | 20 | 4exbidv 1884 | 
. . . 4
⊢ (𝑦 = 𝐵 → (∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜓) ↔ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜒))) | 
| 22 |   | ceqsex8v.11 | 
. . . . . 6
⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | 
| 23 | 22 | 3anbi3d 1329 | 
. . . . 5
⊢ (𝑧 = 𝐶 → (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜒) ↔ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜃))) | 
| 24 | 23 | 4exbidv 1884 | 
. . . 4
⊢ (𝑧 = 𝐶 → (∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜒) ↔ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜃))) | 
| 25 |   | ceqsex8v.12 | 
. . . . . 6
⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) | 
| 26 | 25 | 3anbi3d 1329 | 
. . . . 5
⊢ (𝑤 = 𝐷 → (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜃) ↔ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜏))) | 
| 27 | 26 | 4exbidv 1884 | 
. . . 4
⊢ (𝑤 = 𝐷 → (∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜃) ↔ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜏))) | 
| 28 | 12, 13, 14, 15, 18, 21, 24, 27 | ceqsex4v 2807 | 
. . 3
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜏)) | 
| 29 |   | ceqsex8v.5 | 
. . . 4
⊢ 𝐸 ∈ V | 
| 30 |   | ceqsex8v.6 | 
. . . 4
⊢ 𝐹 ∈ V | 
| 31 |   | ceqsex8v.7 | 
. . . 4
⊢ 𝐺 ∈ V | 
| 32 |   | ceqsex8v.8 | 
. . . 4
⊢ 𝐻 ∈ V | 
| 33 |   | ceqsex8v.13 | 
. . . 4
⊢ (𝑣 = 𝐸 → (𝜏 ↔ 𝜂)) | 
| 34 |   | ceqsex8v.14 | 
. . . 4
⊢ (𝑢 = 𝐹 → (𝜂 ↔ 𝜁)) | 
| 35 |   | ceqsex8v.15 | 
. . . 4
⊢ (𝑡 = 𝐺 → (𝜁 ↔ 𝜎)) | 
| 36 |   | ceqsex8v.16 | 
. . . 4
⊢ (𝑠 = 𝐻 → (𝜎 ↔ 𝜌)) | 
| 37 | 29, 30, 31, 32, 33, 34, 35, 36 | ceqsex4v 2807 | 
. . 3
⊢
(∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜏) ↔ 𝜌) | 
| 38 | 28, 37 | bitri 184 | 
. 2
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ 𝜌) | 
| 39 | 11, 38 | bitri 184 | 
1
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ 𝜌) |