| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exbii | GIF version | ||
| Description: Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
| Ref | Expression |
|---|---|
| exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1631 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
| 3 | 2 | exbii 1631 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-4 1536 ax-ial 1560 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3exbii 1633 19.42vvvv 1940 3exdistr 1942 cbvex4v 1961 ee4anv 1965 ee8anv 1966 sbel2x 2029 2eu4 2151 rexcomf 2673 reean 2680 ceqsex3v 2823 ceqsex4v 2824 ceqsex8v 2826 copsexg 4309 opelopabsbALT 4326 opabm 4348 uniuni 4519 rabxp 4733 elxp3 4750 elvv 4758 elvvv 4759 rexiunxp 4841 elcnv2 4877 cnvuni 4885 coass 5223 fununi 5365 dfmpt3 5422 dfoprab2 6022 dmoprab 6056 rnoprab 6058 mpomptx 6066 resoprab 6071 ovi3 6113 ov6g 6114 oprabex3 6244 xpassen 6957 enq0enq 7586 enq0sym 7587 enq0tr 7589 ltresr 7994 axaddf 8023 axmulf 8024 |
| Copyright terms: Public domain | W3C validator |