| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exbii | GIF version | ||
| Description: Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
| Ref | Expression |
|---|---|
| exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1629 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
| 3 | 2 | exbii 1629 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3exbii 1631 19.42vvvv 1938 3exdistr 1940 cbvex4v 1959 ee4anv 1963 ee8anv 1964 sbel2x 2027 2eu4 2148 rexcomf 2669 reean 2676 ceqsex3v 2816 ceqsex4v 2817 ceqsex8v 2819 copsexg 4292 opelopabsbALT 4309 opabm 4331 uniuni 4502 rabxp 4716 elxp3 4733 elvv 4741 elvvv 4742 rexiunxp 4824 elcnv2 4860 cnvuni 4868 coass 5206 fununi 5347 dfmpt3 5404 dfoprab2 5999 dmoprab 6033 rnoprab 6035 mpomptx 6043 resoprab 6048 ovi3 6090 ov6g 6091 oprabex3 6221 xpassen 6932 enq0enq 7551 enq0sym 7552 enq0tr 7554 ltresr 7959 axaddf 7988 axmulf 7989 |
| Copyright terms: Public domain | W3C validator |