Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2exbii | GIF version |
Description: Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1593 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
3 | 2 | exbii 1593 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3exbii 1595 19.42vvvv 1901 3exdistr 1903 cbvex4v 1918 ee4anv 1922 ee8anv 1923 sbel2x 1986 2eu4 2107 rexcomf 2628 reean 2634 ceqsex3v 2768 ceqsex4v 2769 ceqsex8v 2771 copsexg 4222 opelopabsbALT 4237 opabm 4258 uniuni 4429 rabxp 4641 elxp3 4658 elvv 4666 elvvv 4667 rexiunxp 4746 elcnv2 4782 cnvuni 4790 coass 5122 fununi 5256 dfmpt3 5310 dfoprab2 5889 dmoprab 5923 rnoprab 5925 mpomptx 5933 resoprab 5938 ovi3 5978 ov6g 5979 oprabex3 6097 xpassen 6796 enq0enq 7372 enq0sym 7373 enq0tr 7375 ltresr 7780 axaddf 7809 axmulf 7810 |
Copyright terms: Public domain | W3C validator |