![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2exbii | GIF version |
Description: Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1616 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
3 | 2 | exbii 1616 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3exbii 1618 19.42vvvv 1925 3exdistr 1927 cbvex4v 1946 ee4anv 1950 ee8anv 1951 sbel2x 2014 2eu4 2135 rexcomf 2656 reean 2663 ceqsex3v 2803 ceqsex4v 2804 ceqsex8v 2806 copsexg 4274 opelopabsbALT 4290 opabm 4312 uniuni 4483 rabxp 4697 elxp3 4714 elvv 4722 elvvv 4723 rexiunxp 4805 elcnv2 4841 cnvuni 4849 coass 5185 fununi 5323 dfmpt3 5377 dfoprab2 5966 dmoprab 6000 rnoprab 6002 mpomptx 6010 resoprab 6015 ovi3 6057 ov6g 6058 oprabex3 6183 xpassen 6886 enq0enq 7493 enq0sym 7494 enq0tr 7496 ltresr 7901 axaddf 7930 axmulf 7931 |
Copyright terms: Public domain | W3C validator |