| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exbii | GIF version | ||
| Description: Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
| Ref | Expression |
|---|---|
| exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1651 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
| 3 | 2 | exbii 1651 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3exbii 1653 19.42vvvv 1960 3exdistr 1962 cbvex4v 1981 ee4anv 1985 ee8anv 1986 sbel2x 2049 2eu4 2171 rexcomf 2693 reean 2700 ceqsex3v 2843 ceqsex4v 2844 ceqsex8v 2846 copsexg 4330 opelopabsbALT 4347 opabm 4369 uniuni 4542 rabxp 4756 elxp3 4773 elvv 4781 elvvv 4782 rexiunxp 4864 elcnv2 4900 cnvuni 4908 coass 5247 fununi 5389 dfmpt3 5446 dfoprab2 6057 dmoprab 6091 rnoprab 6093 mpomptx 6101 resoprab 6106 ovi3 6148 ov6g 6149 oprabex3 6280 xpassen 6997 enq0enq 7626 enq0sym 7627 enq0tr 7629 ltresr 8034 axaddf 8063 axmulf 8064 |
| Copyright terms: Public domain | W3C validator |