ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2exbii GIF version

Theorem 2exbii 1616
Description: Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.)
Hypothesis
Ref Expression
exbii.1 (𝜑𝜓)
Assertion
Ref Expression
2exbii (∃𝑥𝑦𝜑 ↔ ∃𝑥𝑦𝜓)

Proof of Theorem 2exbii
StepHypRef Expression
1 exbii.1 . . 3 (𝜑𝜓)
21exbii 1615 . 2 (∃𝑦𝜑 ↔ ∃𝑦𝜓)
32exbii 1615 1 (∃𝑥𝑦𝜑 ↔ ∃𝑥𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wb 105  wex 1502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-ial 1544
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  3exbii  1617  19.42vvvv  1923  3exdistr  1925  cbvex4v  1940  ee4anv  1944  ee8anv  1945  sbel2x  2008  2eu4  2129  rexcomf  2649  reean  2656  ceqsex3v  2791  ceqsex4v  2792  ceqsex8v  2794  copsexg  4256  opelopabsbALT  4271  opabm  4292  uniuni  4463  rabxp  4675  elxp3  4692  elvv  4700  elvvv  4701  rexiunxp  4781  elcnv2  4817  cnvuni  4825  coass  5159  fununi  5296  dfmpt3  5350  dfoprab2  5935  dmoprab  5969  rnoprab  5971  mpomptx  5979  resoprab  5984  ovi3  6025  ov6g  6026  oprabex3  6144  xpassen  6844  enq0enq  7444  enq0sym  7445  enq0tr  7447  ltresr  7852  axaddf  7881  axmulf  7882
  Copyright terms: Public domain W3C validator