Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2exbii | GIF version |
Description: Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1585 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
3 | 2 | exbii 1585 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∃wex 1472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3exbii 1587 19.42vvvv 1893 3exdistr 1895 cbvex4v 1910 ee4anv 1914 ee8anv 1915 sbel2x 1978 2eu4 2099 rexcomf 2619 reean 2625 ceqsex3v 2754 ceqsex4v 2755 ceqsex8v 2757 copsexg 4204 opelopabsbALT 4219 opabm 4240 uniuni 4410 rabxp 4622 elxp3 4639 elvv 4647 elvvv 4648 rexiunxp 4727 elcnv2 4763 cnvuni 4771 coass 5103 fununi 5237 dfmpt3 5291 dfoprab2 5865 dmoprab 5899 rnoprab 5901 mpomptx 5909 resoprab 5914 ovi3 5954 ov6g 5955 oprabex3 6074 xpassen 6772 enq0enq 7345 enq0sym 7346 enq0tr 7348 ltresr 7753 axaddf 7782 axmulf 7783 |
Copyright terms: Public domain | W3C validator |