![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2exbii | GIF version |
Description: Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1616 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
3 | 2 | exbii 1616 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3exbii 1618 19.42vvvv 1925 3exdistr 1927 cbvex4v 1946 ee4anv 1950 ee8anv 1951 sbel2x 2014 2eu4 2135 rexcomf 2656 reean 2663 ceqsex3v 2802 ceqsex4v 2803 ceqsex8v 2805 copsexg 4273 opelopabsbALT 4289 opabm 4311 uniuni 4482 rabxp 4696 elxp3 4713 elvv 4721 elvvv 4722 rexiunxp 4804 elcnv2 4840 cnvuni 4848 coass 5184 fununi 5322 dfmpt3 5376 dfoprab2 5965 dmoprab 5999 rnoprab 6001 mpomptx 6009 resoprab 6014 ovi3 6055 ov6g 6056 oprabex3 6181 xpassen 6884 enq0enq 7491 enq0sym 7492 enq0tr 7494 ltresr 7899 axaddf 7928 axmulf 7929 |
Copyright terms: Public domain | W3C validator |