![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2exbii | GIF version |
Description: Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1615 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
3 | 2 | exbii 1615 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-4 1520 ax-ial 1544 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3exbii 1617 19.42vvvv 1923 3exdistr 1925 cbvex4v 1940 ee4anv 1944 ee8anv 1945 sbel2x 2008 2eu4 2129 rexcomf 2649 reean 2656 ceqsex3v 2791 ceqsex4v 2792 ceqsex8v 2794 copsexg 4256 opelopabsbALT 4271 opabm 4292 uniuni 4463 rabxp 4675 elxp3 4692 elvv 4700 elvvv 4701 rexiunxp 4781 elcnv2 4817 cnvuni 4825 coass 5159 fununi 5296 dfmpt3 5350 dfoprab2 5935 dmoprab 5969 rnoprab 5971 mpomptx 5979 resoprab 5984 ovi3 6025 ov6g 6026 oprabex3 6144 xpassen 6844 enq0enq 7444 enq0sym 7445 enq0tr 7447 ltresr 7852 axaddf 7881 axmulf 7882 |
Copyright terms: Public domain | W3C validator |