| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.41 | GIF version | ||
| Description: Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
| Ref | Expression |
|---|---|
| 19.41.1 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| 19.41 | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 1645 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
| 2 | 19.41.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 2 | 19.9 1658 | . . . 4 ⊢ (∃𝑥𝜓 ↔ 𝜓) |
| 4 | 3 | anbi2i 457 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| 5 | 1, 4 | sylib 122 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
| 6 | pm3.21 264 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
| 7 | 2, 6 | eximd 1626 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
| 8 | 7 | impcom 125 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
| 9 | 5, 8 | impbii 126 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 Ⅎwnf 1474 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: 19.42 1702 eean 1950 r19.41 2652 eliunxp 4806 dfopab2 6256 dfoprab3s 6257 xpcomco 6894 |
| Copyright terms: Public domain | W3C validator |