Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.36-1 | GIF version |
Description: Closed form of 19.36i 1660. One direction of Theorem 19.36 of [Margaris] p. 90. The converse holds in classical logic, but does not hold (for all propositions) in intuitionistic logic. (Contributed by Jim Kingdon, 20-Jun-2018.) |
Ref | Expression |
---|---|
19.36-1.1 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
19.36-1 | ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.35-1 1612 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) | |
2 | 19.36-1.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | 19.9 1632 | . 2 ⊢ (∃𝑥𝜓 ↔ 𝜓) |
4 | 1, 3 | syl6ib 160 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 Ⅎwnf 1448 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: vtocl2 2781 vtocl3 2782 spcimgft 2802 |
Copyright terms: Public domain | W3C validator |