| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.36-1 | GIF version | ||
| Description: Closed form of 19.36i 1686. One direction of Theorem 19.36 of [Margaris] p. 90. The converse holds in classical logic, but does not hold (for all propositions) in intuitionistic logic. (Contributed by Jim Kingdon, 20-Jun-2018.) |
| Ref | Expression |
|---|---|
| 19.36-1.1 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| 19.36-1 | ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35-1 1638 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | 19.36-1.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 2 | 19.9 1658 | . 2 ⊢ (∃𝑥𝜓 ↔ 𝜓) |
| 4 | 1, 3 | imbitrdi 161 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: vtocl2 2819 vtocl3 2820 spcimgft 2840 |
| Copyright terms: Public domain | W3C validator |