ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alexim GIF version

Theorem alexim 1633
Description: One direction of theorem 19.6 of [Margaris] p. 89. The converse holds given a decidability condition, as seen at alexdc 1607. (Contributed by Jim Kingdon, 2-Jul-2018.)
Assertion
Ref Expression
alexim (∀𝑥𝜑 → ¬ ∃𝑥 ¬ 𝜑)

Proof of Theorem alexim
StepHypRef Expression
1 pm2.24 611 . . . . 5 (𝜑 → (¬ 𝜑 → ⊥))
21alimi 1443 . . . 4 (∀𝑥𝜑 → ∀𝑥𝜑 → ⊥))
3 exim 1587 . . . 4 (∀𝑥𝜑 → ⊥) → (∃𝑥 ¬ 𝜑 → ∃𝑥⊥))
42, 3syl 14 . . 3 (∀𝑥𝜑 → (∃𝑥 ¬ 𝜑 → ∃𝑥⊥))
5 nfv 1516 . . . 4 𝑥
6519.9 1632 . . 3 (∃𝑥⊥ ↔ ⊥)
74, 6syl6ib 160 . 2 (∀𝑥𝜑 → (∃𝑥 ¬ 𝜑 → ⊥))
8 dfnot 1361 . 2 (¬ ∃𝑥 ¬ 𝜑 ↔ (∃𝑥 ¬ 𝜑 → ⊥))
97, 8sylibr 133 1 (∀𝑥𝜑 → ¬ ∃𝑥 ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1341  wfal 1348  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449
This theorem is referenced by:  exnalim  1634  exists2  2111
  Copyright terms: Public domain W3C validator