| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > alexim | GIF version | ||
| Description: One direction of theorem 19.6 of [Margaris] p. 89. The converse holds given a decidability condition, as seen at alexdc 1633. (Contributed by Jim Kingdon, 2-Jul-2018.) | 
| Ref | Expression | 
|---|---|
| alexim | ⊢ (∀𝑥𝜑 → ¬ ∃𝑥 ¬ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.24 622 | . . . . 5 ⊢ (𝜑 → (¬ 𝜑 → ⊥)) | |
| 2 | 1 | alimi 1469 | . . . 4 ⊢ (∀𝑥𝜑 → ∀𝑥(¬ 𝜑 → ⊥)) | 
| 3 | exim 1613 | . . . 4 ⊢ (∀𝑥(¬ 𝜑 → ⊥) → (∃𝑥 ¬ 𝜑 → ∃𝑥⊥)) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (∀𝑥𝜑 → (∃𝑥 ¬ 𝜑 → ∃𝑥⊥)) | 
| 5 | nfv 1542 | . . . 4 ⊢ Ⅎ𝑥⊥ | |
| 6 | 5 | 19.9 1658 | . . 3 ⊢ (∃𝑥⊥ ↔ ⊥) | 
| 7 | 4, 6 | imbitrdi 161 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑥 ¬ 𝜑 → ⊥)) | 
| 8 | dfnot 1382 | . 2 ⊢ (¬ ∃𝑥 ¬ 𝜑 ↔ (∃𝑥 ¬ 𝜑 → ⊥)) | |
| 9 | 7, 8 | sylibr 134 | 1 ⊢ (∀𝑥𝜑 → ¬ ∃𝑥 ¬ 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1362 ⊥wfal 1369 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 | 
| This theorem is referenced by: exnalim 1660 exists2 2142 | 
| Copyright terms: Public domain | W3C validator |