Step | Hyp | Ref
| Expression |
1 | | xmetrel 13882 |
. . . . . . 7
β’ Rel
βMet |
2 | | relelfvdm 5549 |
. . . . . . 7
β’ ((Rel
βMet β§ π· β
(βMetβπ))
β π β dom
βMet) |
3 | 1, 2 | mpan 424 |
. . . . . 6
β’ (π· β (βMetβπ) β π β dom βMet) |
4 | | isxmet 13884 |
. . . . . 6
β’ (π β dom βMet β
(π· β
(βMetβπ) β
(π·:(π Γ π)βΆβ* β§
βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) |
5 | 3, 4 | syl 14 |
. . . . 5
β’ (π· β (βMetβπ) β (π· β (βMetβπ) β (π·:(π Γ π)βΆβ* β§
βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) |
6 | 5 | ibi 176 |
. . . 4
β’ (π· β (βMetβπ) β (π·:(π Γ π)βΆβ* β§
βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))))) |
7 | | simpl 109 |
. . . . 5
β’ ((((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))) β ((π₯π·π¦) = 0 β π₯ = π¦)) |
8 | 7 | 2ralimi 2541 |
. . . 4
β’
(βπ₯ β
π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))) β βπ₯ β π βπ¦ β π ((π₯π·π¦) = 0 β π₯ = π¦)) |
9 | 6, 8 | simpl2im 386 |
. . 3
β’ (π· β (βMetβπ) β βπ₯ β π βπ¦ β π ((π₯π·π¦) = 0 β π₯ = π¦)) |
10 | | oveq1 5884 |
. . . . . 6
β’ (π₯ = π΄ β (π₯π·π¦) = (π΄π·π¦)) |
11 | 10 | eqeq1d 2186 |
. . . . 5
β’ (π₯ = π΄ β ((π₯π·π¦) = 0 β (π΄π·π¦) = 0)) |
12 | | eqeq1 2184 |
. . . . 5
β’ (π₯ = π΄ β (π₯ = π¦ β π΄ = π¦)) |
13 | 11, 12 | bibi12d 235 |
. . . 4
β’ (π₯ = π΄ β (((π₯π·π¦) = 0 β π₯ = π¦) β ((π΄π·π¦) = 0 β π΄ = π¦))) |
14 | | oveq2 5885 |
. . . . . 6
β’ (π¦ = π΅ β (π΄π·π¦) = (π΄π·π΅)) |
15 | 14 | eqeq1d 2186 |
. . . . 5
β’ (π¦ = π΅ β ((π΄π·π¦) = 0 β (π΄π·π΅) = 0)) |
16 | | eqeq2 2187 |
. . . . 5
β’ (π¦ = π΅ β (π΄ = π¦ β π΄ = π΅)) |
17 | 15, 16 | bibi12d 235 |
. . . 4
β’ (π¦ = π΅ β (((π΄π·π¦) = 0 β π΄ = π¦) β ((π΄π·π΅) = 0 β π΄ = π΅))) |
18 | 13, 17 | rspc2v 2856 |
. . 3
β’ ((π΄ β π β§ π΅ β π) β (βπ₯ β π βπ¦ β π ((π₯π·π¦) = 0 β π₯ = π¦) β ((π΄π·π΅) = 0 β π΄ = π΅))) |
19 | 9, 18 | syl5com 29 |
. 2
β’ (π· β (βMetβπ) β ((π΄ β π β§ π΅ β π) β ((π΄π·π΅) = 0 β π΄ = π΅))) |
20 | 19 | 3impib 1201 |
1
β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β ((π΄π·π΅) = 0 β π΄ = π΅)) |