| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmeteq0 | GIF version | ||
| Description: The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmeteq0 | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetrel 14890 | . . . . . . 7 ⊢ Rel ∞Met | |
| 2 | relelfvdm 5621 | . . . . . . 7 ⊢ ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met) | |
| 3 | 1, 2 | mpan 424 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
| 4 | isxmet 14892 | . . . . . 6 ⊢ (𝑋 ∈ dom ∞Met → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) | |
| 5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |
| 6 | 5 | ibi 176 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) |
| 7 | simpl 109 | . . . . 5 ⊢ ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) | |
| 8 | 7 | 2ralimi 2571 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
| 9 | 6, 8 | simpl2im 386 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
| 10 | oveq1 5964 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥𝐷𝑦) = (𝐴𝐷𝑦)) | |
| 11 | 10 | eqeq1d 2215 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥𝐷𝑦) = 0 ↔ (𝐴𝐷𝑦) = 0)) |
| 12 | eqeq1 2213 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
| 13 | 11, 12 | bibi12d 235 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ↔ ((𝐴𝐷𝑦) = 0 ↔ 𝐴 = 𝑦))) |
| 14 | oveq2 5965 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝐴𝐷𝑦) = (𝐴𝐷𝐵)) | |
| 15 | 14 | eqeq1d 2215 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝐴𝐷𝑦) = 0 ↔ (𝐴𝐷𝐵) = 0)) |
| 16 | eqeq2 2216 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐵)) | |
| 17 | 15, 16 | bibi12d 235 | . . . 4 ⊢ (𝑦 = 𝐵 → (((𝐴𝐷𝑦) = 0 ↔ 𝐴 = 𝑦) ↔ ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))) |
| 18 | 13, 17 | rspc2v 2894 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))) |
| 19 | 9, 18 | syl5com 29 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))) |
| 20 | 19 | 3impib 1204 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∀wral 2485 class class class wbr 4051 × cxp 4681 dom cdm 4683 Rel wrel 4688 ⟶wf 5276 ‘cfv 5280 (class class class)co 5957 0cc0 7945 ℝ*cxr 8126 ≤ cle 8128 +𝑒 cxad 9912 ∞Metcxmet 14373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-map 6750 df-pnf 8129 df-mnf 8130 df-xr 8131 df-xmet 14381 |
| This theorem is referenced by: meteq0 14907 xmet0 14910 xmetres2 14926 xblss2 14952 xmseq0 15015 comet 15046 xmetxp 15054 |
| Copyright terms: Public domain | W3C validator |