Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xmeteq0 | GIF version |
Description: The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmeteq0 | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetrel 13394 | . . . . . . 7 ⊢ Rel ∞Met | |
2 | relelfvdm 5539 | . . . . . . 7 ⊢ ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met) | |
3 | 1, 2 | mpan 424 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
4 | isxmet 13396 | . . . . . 6 ⊢ (𝑋 ∈ dom ∞Met → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) | |
5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |
6 | 5 | ibi 176 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) |
7 | simpl 109 | . . . . 5 ⊢ ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) | |
8 | 7 | 2ralimi 2539 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
9 | 6, 8 | simpl2im 386 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
10 | oveq1 5872 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥𝐷𝑦) = (𝐴𝐷𝑦)) | |
11 | 10 | eqeq1d 2184 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥𝐷𝑦) = 0 ↔ (𝐴𝐷𝑦) = 0)) |
12 | eqeq1 2182 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
13 | 11, 12 | bibi12d 235 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ↔ ((𝐴𝐷𝑦) = 0 ↔ 𝐴 = 𝑦))) |
14 | oveq2 5873 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝐴𝐷𝑦) = (𝐴𝐷𝐵)) | |
15 | 14 | eqeq1d 2184 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝐴𝐷𝑦) = 0 ↔ (𝐴𝐷𝐵) = 0)) |
16 | eqeq2 2185 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐵)) | |
17 | 15, 16 | bibi12d 235 | . . . 4 ⊢ (𝑦 = 𝐵 → (((𝐴𝐷𝑦) = 0 ↔ 𝐴 = 𝑦) ↔ ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))) |
18 | 13, 17 | rspc2v 2852 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))) |
19 | 9, 18 | syl5com 29 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))) |
20 | 19 | 3impib 1201 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2146 ∀wral 2453 class class class wbr 3998 × cxp 4618 dom cdm 4620 Rel wrel 4625 ⟶wf 5204 ‘cfv 5208 (class class class)co 5865 0cc0 7786 ℝ*cxr 7965 ≤ cle 7967 +𝑒 cxad 9739 ∞Metcxmet 13031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-map 6640 df-pnf 7968 df-mnf 7969 df-xr 7970 df-xmet 13039 |
This theorem is referenced by: meteq0 13411 xmet0 13414 xmetres2 13430 xblss2 13456 xmseq0 13519 comet 13550 xmetxp 13558 |
Copyright terms: Public domain | W3C validator |