Step | Hyp | Ref
| Expression |
1 | | xmetrel 12983 |
. . . . . . . 8
⊢ Rel
∞Met |
2 | | relelfvdm 5518 |
. . . . . . . 8
⊢ ((Rel
∞Met ∧ 𝐷 ∈
(∞Met‘𝑋))
→ 𝑋 ∈ dom
∞Met) |
3 | 1, 2 | mpan 421 |
. . . . . . 7
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
4 | | isxmet 12985 |
. . . . . . 7
⊢ (𝑋 ∈ dom ∞Met →
(𝐷 ∈
(∞Met‘𝑋) ↔
(𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |
5 | 3, 4 | syl 14 |
. . . . . 6
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |
6 | 5 | ibi 175 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) |
7 | | simpr 109 |
. . . . . 6
⊢ ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) → ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
8 | 7 | 2ralimi 2530 |
. . . . 5
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
9 | 6, 8 | simpl2im 384 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
10 | | oveq1 5849 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥𝐷𝑦) = (𝐴𝐷𝑦)) |
11 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑧𝐷𝑥) = (𝑧𝐷𝐴)) |
12 | 11 | oveq1d 5857 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝑦))) |
13 | 10, 12 | breq12d 3995 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ (𝐴𝐷𝑦) ≤ ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝑦)))) |
14 | | oveq2 5850 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝐴𝐷𝑦) = (𝐴𝐷𝐵)) |
15 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝑧𝐷𝑦) = (𝑧𝐷𝐵)) |
16 | 15 | oveq2d 5858 |
. . . . . 6
⊢ (𝑦 = 𝐵 → ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝐵))) |
17 | 14, 16 | breq12d 3995 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((𝐴𝐷𝑦) ≤ ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝑦)) ↔ (𝐴𝐷𝐵) ≤ ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝐵)))) |
18 | | oveq1 5849 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → (𝑧𝐷𝐴) = (𝐶𝐷𝐴)) |
19 | | oveq1 5849 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → (𝑧𝐷𝐵) = (𝐶𝐷𝐵)) |
20 | 18, 19 | oveq12d 5860 |
. . . . . 6
⊢ (𝑧 = 𝐶 → ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝐵)) = ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) |
21 | 20 | breq2d 3994 |
. . . . 5
⊢ (𝑧 = 𝐶 → ((𝐴𝐷𝐵) ≤ ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝐵)) ↔ (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))) |
22 | 13, 17, 21 | rspc3v 2846 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))) |
23 | 9, 22 | syl5 32 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))) |
24 | 23 | 3comr 1201 |
. 2
⊢ ((𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))) |
25 | 24 | impcom 124 |
1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) |