ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ral2imi GIF version

Theorem ral2imi 2535
Description: Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.)
Hypothesis
Ref Expression
ral2imi.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ral2imi (∀𝑥𝐴 𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))

Proof of Theorem ral2imi
StepHypRef Expression
1 ral2imi.1 . . 3 (𝜑 → (𝜓𝜒))
21ralimi 2533 . 2 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 (𝜓𝜒))
3 ralim 2529 . 2 (∀𝑥𝐴 (𝜓𝜒) → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
42, 3syl 14 1 (∀𝑥𝐴 𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442
This theorem depends on definitions:  df-bi 116  df-ral 2453
This theorem is referenced by:  r19.26  2596  r19.30dc  2617  iinerm  6585  ss2ixp  6689  bj-findis  14014
  Copyright terms: Public domain W3C validator