Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ral2imi | GIF version |
Description: Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.) |
Ref | Expression |
---|---|
ral2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ral2imi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral2imi.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | ralimi 2529 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
3 | ralim 2525 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | |
4 | 2, 3 | syl 14 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 |
This theorem depends on definitions: df-bi 116 df-ral 2449 |
This theorem is referenced by: r19.26 2592 r19.30dc 2613 iinerm 6573 ss2ixp 6677 bj-findis 13861 |
Copyright terms: Public domain | W3C validator |