| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrri | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeltrr.1 | ⊢ 𝐴 = 𝐵 |
| eqeltrr.2 | ⊢ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrri | ⊢ 𝐵 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2233 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqeltrr.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 4 | 2, 3 | eqeltri 2302 | 1 ⊢ 𝐵 ∈ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: 3eltr3i 2310 p0ex 4272 epse 4433 unex 4532 ordtri2orexmid 4615 onsucsssucexmid 4619 ordsoexmid 4654 ordtri2or2exmid 4663 ontri2orexmidim 4664 nnregexmid 4713 abrexex 6262 opabex3 6267 abrexex2 6269 abexssex 6270 abexex 6271 oprabrexex2 6275 tfr0dm 6468 exmidonfinlem 7371 1lt2pi 7527 prarloclemarch2 7606 prarloclemlt 7680 0cn 8138 resubcli 8409 0reALT 8443 10nn 9593 numsucc 9617 nummac 9622 qreccl 9837 unirnioo 10169 fz0to4untppr 10320 cats1fvn 11296 4sqlem19 12932 dec2dvds 12934 modsubi 12942 gcdi 12943 prdsex 13302 fn0g 13408 fngsum 13421 sn0topon 14762 retopbas 15197 blssioo 15227 hovercncf 15320 lgslem4 15682 bj-unex 16282 exmidsbthrlem 16390 |
| Copyright terms: Public domain | W3C validator |