| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrri | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeltrr.1 | ⊢ 𝐴 = 𝐵 |
| eqeltrr.2 | ⊢ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrri | ⊢ 𝐵 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2200 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqeltrr.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 4 | 2, 3 | eqeltri 2269 | 1 ⊢ 𝐵 ∈ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: 3eltr3i 2277 p0ex 4221 epse 4377 unex 4476 ordtri2orexmid 4559 onsucsssucexmid 4563 ordsoexmid 4598 ordtri2or2exmid 4607 ontri2orexmidim 4608 nnregexmid 4657 abrexex 6174 opabex3 6179 abrexex2 6181 abexssex 6182 abexex 6183 oprabrexex2 6187 tfr0dm 6380 exmidonfinlem 7260 1lt2pi 7407 prarloclemarch2 7486 prarloclemlt 7560 0cn 8018 resubcli 8289 0reALT 8323 10nn 9472 numsucc 9496 nummac 9501 qreccl 9716 unirnioo 10048 fz0to4untppr 10199 4sqlem19 12578 dec2dvds 12580 modsubi 12588 gcdi 12589 prdsex 12940 fn0g 13018 fngsum 13031 sn0topon 14324 retopbas 14759 blssioo 14789 hovercncf 14882 lgslem4 15244 bj-unex 15565 exmidsbthrlem 15666 |
| Copyright terms: Public domain | W3C validator |