ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeltrri GIF version

Theorem eqeltrri 2239
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqeltrr.1 𝐴 = 𝐵
eqeltrr.2 𝐴𝐶
Assertion
Ref Expression
eqeltrri 𝐵𝐶

Proof of Theorem eqeltrri
StepHypRef Expression
1 eqeltrr.1 . . 3 𝐴 = 𝐵
21eqcomi 2169 . 2 𝐵 = 𝐴
3 eqeltrr.2 . 2 𝐴𝐶
42, 3eqeltri 2238 1 𝐵𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-clel 2161
This theorem is referenced by:  3eltr3i  2246  p0ex  4166  epse  4319  unex  4418  ordtri2orexmid  4499  onsucsssucexmid  4503  ordsoexmid  4538  ordtri2or2exmid  4547  ontri2orexmidim  4548  nnregexmid  4597  abrexex  6082  opabex3  6087  abrexex2  6089  abexssex  6090  abexex  6091  oprabrexex2  6095  tfr0dm  6286  exmidonfinlem  7145  1lt2pi  7277  prarloclemarch2  7356  prarloclemlt  7430  0cn  7887  resubcli  8157  0reALT  8191  10nn  9333  numsucc  9357  nummac  9362  qreccl  9576  unirnioo  9905  fz0to4untppr  10055  sn0topon  12688  retopbas  13123  blssioo  13145  lgslem4  13504  bj-unex  13761  exmidsbthrlem  13861
  Copyright terms: Public domain W3C validator