| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrri | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeltrr.1 | ⊢ 𝐴 = 𝐵 |
| eqeltrr.2 | ⊢ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrri | ⊢ 𝐵 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2211 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqeltrr.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 4 | 2, 3 | eqeltri 2280 | 1 ⊢ 𝐵 ∈ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: 3eltr3i 2288 p0ex 4248 epse 4407 unex 4506 ordtri2orexmid 4589 onsucsssucexmid 4593 ordsoexmid 4628 ordtri2or2exmid 4637 ontri2orexmidim 4638 nnregexmid 4687 abrexex 6225 opabex3 6230 abrexex2 6232 abexssex 6233 abexex 6234 oprabrexex2 6238 tfr0dm 6431 exmidonfinlem 7332 1lt2pi 7488 prarloclemarch2 7567 prarloclemlt 7641 0cn 8099 resubcli 8370 0reALT 8404 10nn 9554 numsucc 9578 nummac 9583 qreccl 9798 unirnioo 10130 fz0to4untppr 10281 4sqlem19 12847 dec2dvds 12849 modsubi 12857 gcdi 12858 prdsex 13216 fn0g 13322 fngsum 13335 sn0topon 14675 retopbas 15110 blssioo 15140 hovercncf 15233 lgslem4 15595 bj-unex 16054 exmidsbthrlem 16163 |
| Copyright terms: Public domain | W3C validator |