| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrri | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeltrr.1 | ⊢ 𝐴 = 𝐵 |
| eqeltrr.2 | ⊢ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrri | ⊢ 𝐵 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2209 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqeltrr.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 4 | 2, 3 | eqeltri 2278 | 1 ⊢ 𝐵 ∈ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: 3eltr3i 2286 p0ex 4232 epse 4389 unex 4488 ordtri2orexmid 4571 onsucsssucexmid 4575 ordsoexmid 4610 ordtri2or2exmid 4619 ontri2orexmidim 4620 nnregexmid 4669 abrexex 6202 opabex3 6207 abrexex2 6209 abexssex 6210 abexex 6211 oprabrexex2 6215 tfr0dm 6408 exmidonfinlem 7301 1lt2pi 7453 prarloclemarch2 7532 prarloclemlt 7606 0cn 8064 resubcli 8335 0reALT 8369 10nn 9519 numsucc 9543 nummac 9548 qreccl 9763 unirnioo 10095 fz0to4untppr 10246 4sqlem19 12732 dec2dvds 12734 modsubi 12742 gcdi 12743 prdsex 13101 fn0g 13207 fngsum 13220 sn0topon 14560 retopbas 14995 blssioo 15025 hovercncf 15118 lgslem4 15480 bj-unex 15855 exmidsbthrlem 15961 |
| Copyright terms: Public domain | W3C validator |