ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeltrri GIF version

Theorem eqeltrri 2267
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqeltrr.1 𝐴 = 𝐵
eqeltrr.2 𝐴𝐶
Assertion
Ref Expression
eqeltrri 𝐵𝐶

Proof of Theorem eqeltrri
StepHypRef Expression
1 eqeltrr.1 . . 3 𝐴 = 𝐵
21eqcomi 2197 . 2 𝐵 = 𝐴
3 eqeltrr.2 . 2 𝐴𝐶
42, 3eqeltri 2266 1 𝐵𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-clel 2189
This theorem is referenced by:  3eltr3i  2274  p0ex  4217  epse  4373  unex  4472  ordtri2orexmid  4555  onsucsssucexmid  4559  ordsoexmid  4594  ordtri2or2exmid  4603  ontri2orexmidim  4604  nnregexmid  4653  abrexex  6169  opabex3  6174  abrexex2  6176  abexssex  6177  abexex  6178  oprabrexex2  6182  tfr0dm  6375  exmidonfinlem  7253  1lt2pi  7400  prarloclemarch2  7479  prarloclemlt  7553  0cn  8011  resubcli  8282  0reALT  8316  10nn  9463  numsucc  9487  nummac  9492  qreccl  9707  unirnioo  10039  fz0to4untppr  10190  4sqlem19  12547  prdsex  12880  fn0g  12958  fngsum  12971  sn0topon  14256  retopbas  14691  blssioo  14713  hovercncf  14800  lgslem4  15119  bj-unex  15411  exmidsbthrlem  15512
  Copyright terms: Public domain W3C validator