ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeltrri GIF version

Theorem eqeltrri 2263
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqeltrr.1 𝐴 = 𝐵
eqeltrr.2 𝐴𝐶
Assertion
Ref Expression
eqeltrri 𝐵𝐶

Proof of Theorem eqeltrri
StepHypRef Expression
1 eqeltrr.1 . . 3 𝐴 = 𝐵
21eqcomi 2193 . 2 𝐵 = 𝐴
3 eqeltrr.2 . 2 𝐴𝐶
42, 3eqeltri 2262 1 𝐵𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-cleq 2182  df-clel 2185
This theorem is referenced by:  3eltr3i  2270  p0ex  4203  epse  4357  unex  4456  ordtri2orexmid  4537  onsucsssucexmid  4541  ordsoexmid  4576  ordtri2or2exmid  4585  ontri2orexmidim  4586  nnregexmid  4635  abrexex  6136  opabex3  6141  abrexex2  6143  abexssex  6144  abexex  6145  oprabrexex2  6149  tfr0dm  6341  exmidonfinlem  7210  1lt2pi  7357  prarloclemarch2  7436  prarloclemlt  7510  0cn  7967  resubcli  8238  0reALT  8272  10nn  9417  numsucc  9441  nummac  9446  qreccl  9660  unirnioo  9991  fz0to4untppr  10142  prdsex  12740  fn0g  12817  sn0topon  13985  retopbas  14420  blssioo  14442  lgslem4  14801  bj-unex  15068  exmidsbthrlem  15168
  Copyright terms: Public domain W3C validator