Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeltrri | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeltrr.1 | ⊢ 𝐴 = 𝐵 |
eqeltrr.2 | ⊢ 𝐴 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrri | ⊢ 𝐵 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2174 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqeltrr.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
4 | 2, 3 | eqeltri 2243 | 1 ⊢ 𝐵 ∈ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: 3eltr3i 2251 p0ex 4174 epse 4327 unex 4426 ordtri2orexmid 4507 onsucsssucexmid 4511 ordsoexmid 4546 ordtri2or2exmid 4555 ontri2orexmidim 4556 nnregexmid 4605 abrexex 6096 opabex3 6101 abrexex2 6103 abexssex 6104 abexex 6105 oprabrexex2 6109 tfr0dm 6301 exmidonfinlem 7170 1lt2pi 7302 prarloclemarch2 7381 prarloclemlt 7455 0cn 7912 resubcli 8182 0reALT 8216 10nn 9358 numsucc 9382 nummac 9387 qreccl 9601 unirnioo 9930 fz0to4untppr 10080 fn0g 12629 sn0topon 12882 retopbas 13317 blssioo 13339 lgslem4 13698 bj-unex 13954 exmidsbthrlem 14054 |
Copyright terms: Public domain | W3C validator |