Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeltrri | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeltrr.1 | ⊢ 𝐴 = 𝐵 |
eqeltrr.2 | ⊢ 𝐴 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrri | ⊢ 𝐵 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2169 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqeltrr.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
4 | 2, 3 | eqeltri 2238 | 1 ⊢ 𝐵 ∈ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: 3eltr3i 2246 p0ex 4166 epse 4319 unex 4418 ordtri2orexmid 4499 onsucsssucexmid 4503 ordsoexmid 4538 ordtri2or2exmid 4547 ontri2orexmidim 4548 nnregexmid 4597 abrexex 6082 opabex3 6087 abrexex2 6089 abexssex 6090 abexex 6091 oprabrexex2 6095 tfr0dm 6286 exmidonfinlem 7145 1lt2pi 7277 prarloclemarch2 7356 prarloclemlt 7430 0cn 7887 resubcli 8157 0reALT 8191 10nn 9333 numsucc 9357 nummac 9362 qreccl 9576 unirnioo 9905 fz0to4untppr 10055 sn0topon 12688 retopbas 13123 blssioo 13145 lgslem4 13504 bj-unex 13761 exmidsbthrlem 13861 |
Copyright terms: Public domain | W3C validator |