![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeltrri | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeltrr.1 | ⊢ 𝐴 = 𝐵 |
eqeltrr.2 | ⊢ 𝐴 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrri | ⊢ 𝐵 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2197 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqeltrr.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
4 | 2, 3 | eqeltri 2266 | 1 ⊢ 𝐵 ∈ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: 3eltr3i 2274 p0ex 4217 epse 4373 unex 4472 ordtri2orexmid 4555 onsucsssucexmid 4559 ordsoexmid 4594 ordtri2or2exmid 4603 ontri2orexmidim 4604 nnregexmid 4653 abrexex 6169 opabex3 6174 abrexex2 6176 abexssex 6177 abexex 6178 oprabrexex2 6182 tfr0dm 6375 exmidonfinlem 7253 1lt2pi 7400 prarloclemarch2 7479 prarloclemlt 7553 0cn 8011 resubcli 8282 0reALT 8316 10nn 9463 numsucc 9487 nummac 9492 qreccl 9707 unirnioo 10039 fz0to4untppr 10190 4sqlem19 12547 prdsex 12880 fn0g 12958 fngsum 12971 sn0topon 14256 retopbas 14691 blssioo 14713 hovercncf 14800 lgslem4 15119 bj-unex 15411 exmidsbthrlem 15512 |
Copyright terms: Public domain | W3C validator |